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Abstract

In this paper, we consider a simple class of stratified spaces – 2-complexes. We
present an algorithm that learns the abstract structure of an embedded 2-complex
from a point cloud sampled from it. We use tools and inspiration from compu-
tational geometry, algebraic topology, and topological data analysis and prove
the correctness of the identified abstract structure under assumptions on the
embedding.
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1 Introduction

Recent developments in technology have led to a dramatic increase in the quantity
and complexity of data we can collect. These increases require new methods to enable
efficient discovery and modelling of the structures underlying them. As the dimension
in which we can observe data increases, it becomes more important to be able to
reduce the dimensionality of large amounts of data. Some of the difficulties can be
addressed by expanding the class of structures we can identify. In Bokor et al. (2021),
the authors removed the assumption that the dimension is constant and presented
an algorithm for learning the simplest class of stratified spaces – graphs. A stratified
space is a space described by gluing together (manifold) pieces, called strata. There
are no restrictions placed upon each stratum’s dimension, and the gluing can give rise
to a variety of interesting and complex local structures. We extend their work to the
identification of the abstract structure underlying a 2-complex.
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As observed in Bokor et al. (2021), manifold learning can be used to detect and
model structures underlying data sets. A variety of approaches and algorithms exist to
learn manifold structures from (noisy) samples, see Cheng et al. (2005), Dey (2007),
Dey and Wang (2014). These methods often place assumptions on the manifold and
the sampling procedure, generally in the form of restrictions on curvatures, as well
as on the density of the sample and the type of noise. The assumptions on curvature
are not satisfied by data sets arising in many applications, in particular geospatial
data sets arising from person and vehicle movement in transportation networks. We
make a second step towards in expanding the set of allowable underlying structures
to include stratified spaces of dimension 2. Bendich et al. (2010) focuses on an algo-
rithm to identify when two points have been sampled from the same stratum of a
stratified space, but does not present a method for detecting what the dimension of
this piece is, or what the global structure is. Stolz et al. (2020) present an algorithm
for detecting samples of two intersecting manifolds, which is a first approximation of
splitting a space into stratified pieces, and it comes with experimental verification but
no theoretical guarantees. In Aanjaneya et al. (2012), the focus is on reconstructing a
metric on a graph, with the input consisting of intrinsic distance on the metric graph,
the associated theoretical guarantees are about the lengths of the edges in the met-
ric, instead of relating to the geometry of the embedding. In particular, they do not
need to consider vertices of degree 2, as in their setting these are points on an edge.
Chazal et al. (2009) presents a method for sampling and reconstructing compact sets
in Euclidean space, with a similar focus on samples with bounded Hausdorff noise and
a sufficient density. They guarantee a homotopy equivalence under sufficient condi-
tions but do not present a method for learning the stratified structure. Bendich et al.
(2007) present an algorithm using persistent homology to assess the local homology
of a sample at a particular point, using Delauney triangulations, which comes with a
great computational cost.

1.1 Contribution

This paper describes an algorithm for learning the abstract structure underlying an
embedded 2-complex, and provides theoretical guarantees in terms of the geometric
embedding that the sample has come from. In particular, the algorithm can be used
to learn the number of cells of each dimension, and how they piece together. The
output of this algorithm can then be used as a starting point to learn the particular
embedding the sample came from. Previous work has focussed on using persistent
homology to approximate the local homology at a point, which comes with significant
computational overheads. We avoid this by approximating the local homology at each
point using a fixed approximation scale, relating to the geometric conditions on the
embedding. The algorithm easily works in parallel, which significantly reduces the run
time on large data sets. While the algorithm only applies to 2-complexes, many data
sets arising from applications are 2-dimensional and it provides a foundation for further
developments to increase/remove the dimensionality assumption. We acknowledge that
from certain perspectives, moving from graphs to 2-complexes is a small step, yet there
are many technical and geometric details involved in guaranteeing the accuracy of the
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structure learnt even for 2-complexes, and this is the limiting factor for removing the
dimensionality assumption at this stage.

This article begins with Section 2, containing definitions of the main objects and
tools we use throughout the article. After this, Section 3 consists of geometric lemmas
used in Section 4, which considers the local geometry and topology we use to parti-
tion the sample P . Finally, Section 5 presents algorithms for recovering the abstract
structure. Section 5 contains a sequence of lemmas (Lemmas 5.9 to 5.24), which cover
cases used in Theorem 5.25, also known as the ‘Big Theorem’ of this article.

2 Definitions and Notations

We begin with some definitions and notations we use throughout this article. We begin
with the following definition of complex, following Definition 2.4 Carlsson (2014).
Definition 2.1 (Abstract Complex, Definition 2.4 Carlsson (2014)). An abstract
simplicial complex X consists of a pair (V (X),Σ(X)), with V (X) a finite set, and
Σ(X) a subset of the power set of V (X), such for all σ ∈ Σ(X) and ∅ 6= τ ⊆ σ, we
have τ ∈ Σ(X). We call V (X) the vertices, and Σ(X) the simplices of X.

For ease of notation and to avoid confusion later in this paper, we will use the
following specialised definition for abstract simplicial complexes with top dimension 2.
Definition 2.2 (Abstract 2-Complex). An abstract 2-complex X consists of

1. a set V = V (X) of vertices,
2. a set E = {σ ∈ Σ(X) |σ contains 2 unique elements} of edges,
3. a set T = {σ ∈ Σ(X) |σ contains 3 unique elements} of triangles,

and an incidence operator I, which acts as follows: for any pair of cells σ, τ ∈ X

I (σ, τ) =

{
1 if σ ( τ

0 otherwise

We restrict ourselves to linear embeddings of 2-complexes X in Rn for some n ≥ 3.
Definition 2.3 (Linear embedding of 2-complex). Fix n ≥ 3, then a linear embedding
of a 2-complex X in Rn, (X,Θ), consists of an abstract 2-complex X and a map

Θ : X → Rn

such that
1. on vertices v ∈ V , Θ is injective,
2. on edges {u, v} ∈ E, Θ is defined by linear interpolation on Θ(u) and Θ(v):

Θ({u, v }) = uv is the line segment between Θ(u) and Θ(v),
3. on triangles {u, v, w } ∈ E, Θ is defined by linear interpolation on Θ(u), Θ(v)

and Θ(w): Θ({u, v, w }) = 4uvw is the triangle with vertices Θ(u), Θ(v) and
Θ(w), and Θ(u), Θ(v), Θ(w) are no co-linear,

4. for any two cells σ, τ of X, we have Θ(σ) ∩Θ(τ) = Θ(σ ∩ τ).
We restrict our attention to embedded 2-complexes |X|Θ such that

5. if a vertex v is in the boundary of precisely two edges {v, u1} and {v, u2}, then
6 u1vu2 6= π,
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6. if an edge {v0, v1} is in the boundary of precisely two triangles {v0, v1, u1} and
{v0, v1, u2}, then v0, v1, u1, u2 are not co-planar.

We denote the image of Θ in Rn by |X|Θ.
We often talk about the boundary of a cell.

Definition 2.4 (Cell boundary). Let X be an abstract 2-complex, and take a cell
σ ∈ X. Then the boundary of τ , ∂τ , consists of the cells σ ∈ X such that I(σ, τ) = 1.

An important property of a cell σ ∈ X, is whether it is locally maximal or not.
Definition 2.5 (Locally maximal cell). Let σ be a cell in a 2-complex. We say σ is
locally maximal if there is no cell τ ∈ X, τ 6= σ with σ ⊂ τ . That is, there is no cell τ
with σ in the boundary of τ .
Remark 1. Consider two cells σ, τ in a complex X, we say σ is a face of τ if σ is in
the boundary of τ , and we say σ is a co-face of τ if τ is in the boundary of σ.

We can represent the incidence relationships of cells in X in a weighted graph B.
Definition 2.6 (Incidence graph). Take an abstract 2-complex X. The incidence
graph B of X is the weighted graph with

1. a weight 0 node nv for each vertex v of X,
2. a weight 1 node ne for each edge e = {u, v} of X,
3. a weight 2 node nt for each triangle t = {u, v, w} of X,
4. an edge between a weight 2 node nt and weight 1 node ne if e ⊂ t,
5. an edge between a weight 2 node nt and weight 0 node nv if v ∈ t,
6. an edge between a weight 1 node ne and weight 0 node nv if v ∈ e.

Abusing notation, we usually write |X| instead of |X|Θ or (X,Θ), use v to denote
both the abstract vertex and its embedded location Θ(v), uv to denote both the
abstract edge and the embedded image Θ({u, v }), and 4uvw to denote both the
abstract triangle and the embedded image Θ({u, v, w }). Whether we are referring to
an element of the abstract 2-complex or its image in Rn should be clear from the
context.

We use the following conventions in this article. Given two points x, y ∈ Rn, ‖x−y‖
is the standard Euclidean distance between x and y, for a point x ∈ Rn and a set
Y ⊂ Rn, we set

d(x, Y ) := inf
y∈Y
‖x− y‖,

and for two sets X,Y ⊂ Rn, we set

d(X,Y ) := min

{
inf
x∈X

d(x, Y ), inf
y∈Y

d(y,X)

}
,

dH(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
.

We also consider thickenings of a subset X: we let

Xα := {p ∈ Rn | d(p,H) ≤ α}.
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In proofs towards the end of this article, we use the weak feature size of X to allow
us to construct isomorphism, which was introduced in Chazal and Lieutier (2007) as
the infimum of the positive critical values of the distance function of X.

At various moments in the algorithm, we consider the diameter of a set of points
X. The diameter of X, D(X), is the maximum distance between any pair of points
x, y ∈ X:

D(X) := maxx,y∈X‖x− y‖.
We use Br(p) to denote the ball of radius r centred at a point p ∈ Rn, by ∂BR(p)

we mean the boundary of such a ball, and let

Sk = {x ∈ Rn | ‖x‖ = 1}

denote the standard k-sphere. We also regularly consider points in a spherical shell.
Definition 2.7. Fix a < b, and let y be a point in Rn. The spherical shell of radii a
and b centered at p, Sba(p) is the set

{q ∈ Rn | a ≤ ‖q − p‖ ≤ b} .

We consider dihedral angles between two half-planes.
Definition 2.8. Let H1, H2 be two half-planes with a common boundary line L. Then,
the dihedral angle α between H1 and H2 is the angle formed by two vectors v1 ∈ H1

and v2 ∈ H2 originating from the same point x ∈ L such that both v1 and v2 are
perpendicular to L.

We work with ε-samples P of the embedded 2-complex |X|.
Definition 2.9 (ε-sample). Let |X|⊂ Rn be an embedded 2-complex. An ε-sample P
of |X| is a finite subset of Rn such that dH(|X|, P ) ≤ ε.

In Bokor et al. (2021) the authors use the threshold graph on a set of points, which
we will also use.
Definition 2.10 (Threshold graph, Definition 3.1 Bokor et al. (2021)). Let P ⊂ RN
be a finite collection of points, and fix r > 0. The graph at threshold r on P , Gr(P ),
is the graph with vertices p ∈ P , and edges (p, q) if ‖p− q‖≤ r.

The objects we consider in this article are 2-dimensional, and so we also use Čech
complexes.
Definition 2.11 (Čech Complex). Let P ⊂ Rn be a finite set of points. The Čech
complex at scale δ, Čδ(P ) is the complex with j-cells {vi}ji=0 such that the intersection⋂j
i=0Bδ(vi) is non-empty.

Now, we formalise the aim of this article. Given an ε-sample P of some linearly
embedded 2-complex |X|, we want to recover the abstract structure of the 2-complex
X. To do this, we need to learn the number of vertices, the number of edges, and the
number of triangles, as well as the incidence relations between them. We achieve this
by first deciding for each p ∈ P if it is near a cell that is not locally maximal, or far
away from all cells which are not locally maximal. This partitions P into two subsets
which intuitively are PNLM containing samples p near non-locally maximal cells, and
PLM containing samples p only near locally maximal cells. Rigorous definitions of
PNLM and PLM are in Definition 4.6. Part of this process involves approximating
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the local homology at each p ∈ P using a radius r. This requires a choice of scale
at which to approximate |X| from P . Unlike in Bokor et al. (2021), the relationship
between clusters in PNLM and PLM to vertices, edges and triangles is not direct. We
can, however, still infer the incidence operator.
Remark 2. In this paper, we use local homology in very restrictive settings. It is a
very generally construction: for a space X, the local homology of X at a point x ∈ X
is the relative homology H (X,X \ {x}).

3 Geometric Lemmas

We provide some geometric lemmas as motivation for the definitions of local structures
and the geometric assumptions we place on the embeddings of a 2-complex. There
are two parts to the definition of the local structure of a point cloud P at a sample
p: the first is a topological condition relating to the homology of the samples in a
spherical shell around p, and the second relates to the geometry of these samples. The
geometric lemmas in this section allow us to distinguish between points near cells that
are not locally maximal and those that are only near locally maximal cells when the
topological structure of P at p does not, see Section 4. The proofs of the lemmas in
this section can be found in Appendix A.

We begin with a helpful lemma that bounds the distance between a point in a
spherical shell within ε of a ray and the point in the ray in the middle of the shell.
Lemma 3.1. Let L ⊂ Rn be a ray originating at a point z, and fix

R ≥ 14ε > 0.

Let P ⊂ Rn have dH(P,L) ≤ ε and take p ∈ Rn with

‖p− z‖ ≤ R

2
.

Let x be the point in L with ‖x− p‖ = R. Then for all q ∈ SR+ε
R−ε(p) ∩ P

‖q − x‖ ≤
√

2ε.

Next, Lemma 3.2, which motivates part 3 in Definition 4.4. The lemma considers
the distances between triples of points in SR+ε

R−ε(p)∩Hε for some point p ∈ Hε, where
Hε is the thickening of a plane H by ε, with ε > 0.
Lemma 3.2. Consider an affine 2-hyperplane H ⊂ Rn and fix

R ≥ 14ε ≥ 0.

Let P ⊂ Rn be such that dH(P,H) ≤ ε, and take p with d(p,H) ≤ ε. Then, for all
q1 ∈ SR+ε

R−ε(p) ∩ P , there exists q2 ∈ SR+ε
R−ε(p) ∩ P with

‖q2 − q1‖ ≥ 2
√
R2 − ε2 − (1 +

√
2)ε.
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Now that we have a geometric property to test if a point p and the samples in
SR+ε
R−ε(p) are from a subset of a plane. We want to understand what conditions need

to be placed on points near an edge in two triangles to guarantee this property does
not hold. In particular, Lemma 3.3 motivates part 4 of Definition 4.5.

For ease of reading, we let

Ψ(ε,R) = arccos

(
(R+ 2ε)2 +

(
3R
2 − ε

)2 − (2√R2 − ε2 −
(
2 + 2

√
2
)
ε
)2

2(R+ 2ε)
(

3R
2 − ε

) )
.

The following lemma motivates the conditions we place on the dihedral angle between
two triangles with a common boundary edge uv (of degree 2). This allows us to guar-
antee that the geometry of the samples in SR+ε

R−ε(p) for a sample p near uv is not the

same as the geometry of samples in SR+ε
R−ε(p) when p is near a triangle but far away

from its boundary.
Lemma 3.3. Consider two affine 2-half-planes H1, H2 ⊂ Rn whose boundaries are
equal, say L, and fix R ≥ 14ε > 0. Let α be the dihedral angle between H1 and H2.
Let P be a set of points such that dH(P,H1 ∪ H2) ≤ ε. Further, take p such that
d(p,H1) ≤ ε. If

d(L, p) ≤ R

2
− 2ε

and
α ∈ (0,Ψ (ε,R))

then there exist q1 ∈ SR+ε
R−ε(p) ∩ P such that for all q2 ∈ SR+ε

R−ε(p) ∩ P

‖q2 − q1‖ < 2
√
R2 − ε2 −

(
1 +
√

2
)
ε.

Next, we investigate the geometry of points near a ray and half-plane, to develop
a test for points near not locally maximal cells.

There are several local structures that have the same topological structure: they
consist of two connected components with no 1-cycles. In Bokor et al. (2021), the
authors used the angle between the centroids of the two connected components to
distinguish between points near a degree 2 vertex and points near the interior of an
edge. Unfortunately, this test is not sufficient after introducing triangles. If we first
check for the presence of triangles, we can again use the inner-product test. To test for
the presence of triangles, we examine the diameters of the two connected components.

So, we first bound the diameter of a set of samples only near a line.
Lemma 3.4 (Diameter of points near ray). Let L ⊂ Rn be a ray originating at a
point z, and fix R > 14ε > 0. Let P ⊂ Rn have dH(P,L) ≤ ε and take p ∈ Rn with

d(L, p) ≤ ε and ‖p− z‖ ≤ R−ε
2 . Then

(
SR+ε
R−ε(p) ∩ P

) 3ε
2 has 1 connected component c,

and the diameter is less than 2
√

2ε.
The previous lemma bounds the diameter of a connected component containing

points with ε of an edge, that are within SR+ε
R−ε(p) for a sample p near a vertex in the

boundary of this edge. We need to guarantee that if p is near the interior of an edge, it
does not fail the diameter test. To ensure this, we obtain the following as a corollary
of Lemma 3.4.
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Corollary 1. Let L ⊂ Rn be a line, and fix R > 3ε > 0. Let P ⊂ Rn have dH(P,L) ≤ ε
and take p ∈ Rn with d(L, p) ≤ ε and

‖p− z‖ ≤ R− ε
2

.

Then
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 has 2 connected components c1, c2, and their diameters are less

than 2
√

2ε.

Proof. First note that SR+ε
R−ε(p)∩L consists of two connected components, C1, C2, and

the distance between them is R − ε. Hence, we can apply Lemma 3.4, to C1 and C2

individually, obtaining a connected component for each, say c1 and c2. Further, the
diameters of c1 and c2 are less than 2

√
2ε.

The following lemma guarantees that if there are samples in SR+ε
R−ε(p) that are

within ε of a triangle, the diameter test fails.
Lemma 3.5. Let L1, L2 ⊂ Rn be two rays originating at the same point z with the
angle α between in the interval [π

6
, π
)
,

and fix R ≥ 14ε > 0. Let T be the set between L1 and L2. Take p ∈ Rn with d(T, p) ≤ ε
and ‖p − x‖ ≤ R−ε

2 , and P ⊂ Rn with dH(P, T ) ≤ ε. Then, there exist points q1, q2

in P with ‖q1 − p‖, ‖q2 − p‖ ∈ [R − ε,R + ε] such that ‖q1 − q2‖ > 2
√

2ε, and q1, q2

are path connected. Furthermore, the connected component containing q1 and q2 has
diameter bigger than 2

√
2ε.

4 Local Structures

To identify the abstract structure of the 2-complex, the algorithm in Section 5 first
partitions the sample P into sets PLM , containing samples that are only near locally
maximal cells, and PNLM , containing samples near cells that are not locally maximal.
The decision tree for if a point is in PNLM or PLM is summarised in Figure 1. After
this, we further partition PLM and PNLM to infer the number of cells and their
dimensions, as well as the incidence operator.

Take an embedded 2-complex |X|⊂ Rn, fix (an appropriate) 0 < ε ≤ R and take
p ∈ Rn with d(|X|, p) ≤ ε. Consider the topological and geometric structure of |X|
in a neighbourhood of p, beginning with BR(p) ∩ |X|. If BR(p) ∩ |X| is disconnected,
we restrict to the connected component Cp containing proj|X|(p). Then, we consider
∂BR(p) ∩ Cp. Let proj|X|(p) be the projection of p to |X|, and let σp be the cell
containing proj|X|(p). If σp is locally maximal and d(|∂σp|, p) > R, then ∂BR(p) ∩Cp
has one of the following structures:

1. ∂BR(p) ∩ Cp is empty, in which case σp is a locally maximal vertex,
2. ∂BR(p) ∩ Cp is a pair of antipodal points, in which case σp is a locally maximal

1-cell,
3. ∂BR(p) ∩ Cp is homotopic to S1 lying in a plane, in which case σp is a 2-cell.
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The above structures consist of two parts: we examine the topological structure of
∂BR(p) ∩Cp, and then look at its geometry. If p is within R of some cell τp (possibly
τp = σp) which is not locally maximal, then either the topological structure or the
geometric structure is not one of the above cases. As such, we use a two-step process
to decide if a given sample p is within R of some not locally maximal cell τp: first,
we examine the topological structure of ∂BR(p) ∩Cp by looking at its homology, and
then if necessary, we consider its geometric structure. We let

H•(p) := H• (∂BR(p) ∩ Cp) .
As we are restricting ourselves to 2-complexes, we focus on H0(p) and H1(p).

Definition 4.1 (Local homology signature). Let |X|⊂ Rn be an embedded 2-complex,
and fix R > ε > 0. Take a point p ∈ Rn with d(p, |X|) ≤ ε. The local homology
signature of |X| at p is

Sig(p) := (|H0(p)|, |H1(p)|) .
In the above cases, the local homology signature of |X| at p is as follows.

1. Sig(p) = (0, 0),
2. Sig(p) = (2, 0),
3. Sig(p) = (1, 1).

and so if Sig(p) is not equal to (0, 0), (2, 0) or (1, 1), then p is within R of a cell τp
which is not locally maximal. If Sig(p) is (0, 0) then p is within ε of a degree 0 vertex.
Unfortunately, if Sig(p) is either (2, 0) or (1, 1), we need to examine the geometric
structure of ∂BR(p) ∩ Cp. When Sig(p) = (2, 0), we can distinguish between the case
where σp is a locally maximal 1-cell and where σp is a vertex of degree 2 as follows:
let the two points in ∂BR(p)∩Cp be c1 and c2. If σp is a 1-cell, then 6 c1pc2 = π, and
other 6 c1pc2 6= π. When Sig(p) = (1, 1) we need to distinguish between if σq is a 2-
cell, and if σp is in the boundary of 2-cells. We can do so by checking if ∂BR(p)∩Cp is
contained in a plane: if it is, then σp is a 2-cell, if not σp is either an edge or a vertex
that is not locally maximal.

Recall that we are working with an ε-sample P of the embedded 2-complex |X|
instead of |X|. We want to approximate Sig(p) with P . As P is an ε-sample, we can
approximate ∂BR(p) ∩ Cp by first considering the structure of BR+ε(p) ∩ P , then
the structure of SR+ε

R−ε(p) ∩ P . Before we define the (ε,R)-local structure of P at p
(Definition 4.3), we need the following notation.

Definition 4.2. Let P ⊂ Rn be a finite set of points. Then, rkδ,γk (P ) is the rank of
the map on the kth homology groups induced by the inclusion P δ ↪→ P γ .

We can now formally define the (ε,R)-local structure of P at p.
Definition 4.3 ((ε,R)-local homology signature). Let P ⊂ Rn be an ε-sample of an

embedded 2-complex |X|, and fix R ≥ 14ε. Let C
3ε
2
p be samples in the same connected

component of threshold graph G3ε (BR+ε(p) ∩ P ) as p. The (ε,R)-local homology
signature Sigε,R(p) of P at a sample p is

Sigε,R(p) :=
(

rk
3ε
2 ,

7ε
2

0

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

)
, rk

3ε
2 ,

7ε
2

1

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

))
.

We now define the types of local structures, beginning with maximal local
structures.
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Definition 4.4 (Maximal (ε,R)-local structure). Let P be an ε sample of a linearly

embedded 2-complex |X| and fix R ≥ 14ε. Let C
3ε
2
p be the set of samples in the same

connected component of (BR+ε(p) ∩ P )
3ε
2 as p. We say the (ε,R)-local structure of P

at p is maximal if any of the following hold:
1. Sigε,R(p) = (0, 0), in which case we say that the (ε,R)-local structure of P at p

is maximal of dimension 0,

2. Sigε,R(p) = (2, 0), and the two connected components c1, c2 of
(
SR+ε
R−ε(p) ∩ C

3ε
2
p

) 3ε
2

have diameters less than 5ε and mid-points q1 and q2 such that

〈q1 − p, q2 − p〉 ≤ −R2 + 2Rε+ 7ε2,

in which case we say that the (ε,R)-local structure of P at p is maximal of
dimension 1,

3. Sigε,R(p) = (1, 1), and for all q1 ∈ SR+ε
R−ε(p) ∩ P,∃q2 ∈ SR+ε

R−ε(p) ∩ P with

‖q2 − q1‖ < 2
√
R2 − ε2 −

(
1 +
√

2
)
ε.

in which case we say that the (ε,R)-local structure of P at p is maximal of
dimension 2,

Next, we define not maximal (ε,R)-local stuctures.
Definition 4.5 (Not maximal (ε,R)-local structure). Let P be an ε sample of a

linearly embedded 2-complex |X| and fix R ≥ 14ε. Let C
3ε
2
p be the set of samples in

the same connected component of Č 3ε
2

(SR+ε(p) ∩ P ) as p. We say that the (ε,R)-local
structure of P at p ∈ P is not maximal if any of the following hold:

1. Sigε,R(p) = (n, 0) for some n ∈ Z≥0, n 6= 0, 2,
2. Sigε,R(p) = (1, n) for some n ∈ Z≥0, n 6= 1,
3. Sigε,R(p) = (2, 0) and letting two connected components of

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

) 3ε
2

be c1, c2, either max {D(c1),D(c2)} ≤ 2
√

2ε and letting mid-points of c1, c2 be
q1, q2

〈q1 − p, q2 − p〉 > −R2 + 2Rε+ 7ε2,

4. Sigε,R(p) = (1, 1) and there exists q1 ∈ P ∩ SR+ε
R−ε such that for all q2 ∈ P ∩ SR+ε

R−ε

‖q2 − q1‖ < 2
√
R2 − ε2 −

(
1 +
√

2
)
ε.

Having defined the two classes of (ε,R)-local structures, we can define our initial
partition.
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Definition 4.6 (PLM and PNLM ). Let P be an ε-sample of an embedded 2-complex
|X|. We partition P into two sets PLM and PNLM defined as

PLM := {p ∈ P | the (ε,R)-local structure at of P at p is maximal.}
PNLM := {p ∈ P | the (ε,R)-local structure of P at p is not maximal.}

Remark 3. For all p ∈ P , P either has maximal (ε,R)-local structure at p ∈ P or it
does not. Hence, the partitioning of P into PLM and PNLM defined in Definition 4.6
is disjoint.

Recall that the samples we are working with can contain noise, and we use the

homology of Č 3ε
2

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

)
in the definition of (ε,R)-local structure. Hence,

we place assumptions on |X| to ensure that we correctly detect when samples are near
cells that are not locally maximal. We place assumptions on the distances between
any two vertices u and v, the distance between an edge uw and a vertex v 6= u,w, the
angle between any pair of edges with a common boundary vertex. Additionally, we
place assumptions on the dihedral angle between any two 2-cells which have common
boundary components. So that we can infer the incidence operator, we will require an
upper bound on the relationship between R and ε, and so we also restrict out choice of
R in terms of ε. We use the following notation in the decicision flow chart (Figure 1):

β = −R2 + 2Rε+ 7ε2,

γ = 2
√
R2 − ε2 −

(
1 +
√

2
)
ε.

To increase the readability of this article, we define the following functions.
Definition 4.7. Fix R > 14ε > 0. We define the following functions:

1.

Ψ1(ε,R) = arccos

((
R
2 − ε

)2 − 18ε2(
R
2 − ε

)2
)

≥ arccos

(
(R− ε)2 − 18ε2

(R− ε)2

)
+ 2 arcsin

(
2ε

(R− ε)

)
2.

Ψ2(ε,R) = π − arctan

(
R+ 3ε

6ε

)
+ arcsin

(
R2 − 4Rε− 9ε2

(R+ ε)
√
R2 + 6Rε+ 34ε2

)
3.

Ψ3(ε,R) = arccos

(
(R+ 2ε)2 +

(
3R
2 − ε

)2 − (2√R2 − ε2 −
(
2 + 2

√
2
)
ε
)2

2(R+ 2ε)
(

3R
2 − ε

) )

11



p ∈ P

Sigε,R(p) = (0, 0)

Sigε,R(p) = (2, 0) Sigε,R(p) = (1, 1)

Sigε,R(p) = (n, 0) Sigε,R(p) = (1, n)

p has a maximal
(ε,R)-local structure

of dimension 0

P has non-maximal
(ε,R)-local structure

P has non-maximal
(ε,R)-local structure

max{diam(c1),
diam(c2)} ≤

2
√

2ε

max{diam(c1),
diam(c2)} >

2
√

2ε

∀q1∃q2

‖q2 − q1‖ ≥ γ

∃q1∀q2

‖q2 − q1‖ < γ

〈q1−p, q2−p〉 > β

〈q1−p, q2−p〉 ≤ β

p has a non-maximal
(ε,R)-local structure

p has a maximal
(ε,R)-local structure

of dimension 1

p has a non-maximal
(ε,R)-local structure

p has a maximal
(ε,R)-local structure

of dimension 2

Fig. 1: Flow chart for determining if the (ε,R)-local structure of P at p is maximal
or not. If maximal, what the dimension is.

To improve intuition of these functions, Figures 2 to 4 provide graphs of them.
Note they are effectively a function of R

ε as they are invariant to scaling both R and
ε by the same amount.

We now state the assumptions we place on |X|.
Assumption 1. Fix R ≥ 14ε > 0. We restrict to embedded 2-complexes |X|= (X,π)
which satisfy the following.

1. For all vertices u, v,
‖u− v‖ > 6(R+ ε).

2. For a vertex v and edge uw with v 6= u,w,

d(uw, v) > 6(R+ ε).

12



Fig. 2: Graph of Ψ1

(
1, Rε

)
.

Fig. 3: Graph of Ψ2

(
1, Rε

)
.
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Fig. 4: Graph of Ψ3

(
1, Rε

)
.

3. For a vertex v and a triangle 4uwx with v 6= u,w, x,

d(4uwx, v) > 6(R+ ε).

4. For an edge uv and a triangle 4wxy with v, u 6= w, x, y,

d(4wxy, uv) > 6(R+ ε).

5. For any triangle 4uvw,

6 uvw, 6 vwu, 6 wuv ≥ π

6
.

6. For any pair of edges uv, xy with no common vertex,

d(uv, xy) > 6(R+ ε).

7. For any triangles 4uwv,4xyz,

d(4uwv,4xyz) > 6(R+ ε).

8. For any pair of edges uv,wv,

6 uvw ≥ Ψ1(ε,R).

14



9. For all degree 2 vertices v with edges uv,wv and no triangle 4uvw,

6 uvw ≤ Ψ2(ε,R).

10. For any pair of triangles 4uvw1,4uvw2, the dihedral angle between them is
bounded below by Ψ1(ε,R).

11. For any pair of triangles 4uvw1,4uvw2, with uv of degree 2, the dihedral angle
between them is bounded above by Ψ2(ε,R).

12. For any triangle 4wwvw2 and edge uv the angle between uv and and ray L in
4w1vw2 at v is bounded below by Ψ1(ε,R) and the radius of the largest circle
inscribed by 4uvw is at least 2R+ 3ε.

13. For any vertex v such that

|H0 (BR(v) ∩ |X|) |= 1, and |H1 (BR(v) ∩ |X|) |= 1,

the angle between any two rays L1, L2 ∈ |X| at v is bounded above Ψ3(ε,R).
Remark 4. The reasons behind some of the conditions in Assumption 1 are relatively
clear, while others are a bit more obscure. In particular, the roles of conditions 11
and 12 are not immediately clear. Condition 12 allows us to detect the vertex v in our
algorithms. In particular, it is used in Proposition 4.11 show that we obtain Sigε,R =
(n, •), n ≥ 2. Condition 13 allows us to detect which topologically looks similar to an
edge of degree 2 or a triangle, and so we place restrictions on the formation of the
cone, potentially with fins, so that we can detect the vertex (Proposition 4.11). This
condition is equivalent to bounding the angle at v of the convex hull which contains
the triangles with vertex v.

The following Propositions provide us with ‘regions’ near locally maximal i-cells
σ (for i = 0, 1, 2), where we can guarantee that at any sample in this region, the
(ε,R)-local structure of P at p is maximal of dimension i.

We begin with the region around a locally maximal vertex.
Proposition 4.8. Let v be a vertex of |X|⊂ Rn, which is locally maximal, and let P
be an ε-sample of |X|. Then, for all p ∈ P with ‖p−v‖ ≤ 4ε, the (ε,R)-local structure
of P at p is maximal of dimension 0.

Proof. As v is locally maximal, it is not in the boundary of any other cell, and from
Assumption 1 for all vertices u 6= v, ‖u−v‖ > 6(R+ε), for all edges uw with v 6= u,w,

d(uv, v) > 6(R+ ε),

and for all triangles 4uwx with v 6= u,w, x,

d(4uwx, v) > 6(R+ ε).

Hence, any sample p ∈ P within 4ε of v is within ε of v. Thus, (BR+ε(p) ∩ P )
3ε
2

consists of a single connected component, and SR+ε
R−ε(p) ∩ P = ∅.

Thus, SR+ε
R−ε(p) ∩ P , Sigε,R(p) = (0, 0), and the (ε,R)-local structure of P at p is

maximal of dimension 0.
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Next, we bound the region near a locally maximal edge.
Proposition 4.9. Let uv be an edge of |X|⊂ Rn, which is locally maximal, and let P be
an ε-sample of |X|. Then, for all p ∈ P with d(uv, p) ≤ ε, and ‖p−u‖, ‖p−v‖ ≥ 3R

2 +ε,
the (ε,R)-local structure of P at p is maximal of dimension 1.

Proof. By Assumption 1, for any vertex w 6= u, v

d(uv,w) > 6(R+ ε),

for any edge wx, with w, x 6= u, v,

d(uv,wx) > 6(R+ ε),

for any triangle 4wxy, with w, x, y 6= u, v,

d(4wxy, uv) > 6(R+ ε),

and so the connected component C
3ε
2
p of (BR+ε(p) ∩ P )

3ε
2 which contains p, contains

only points q ∈ P with d(q, uv) ≤ ε.
Hence, Č 3ε

2

(
SR+ε
R−ε(p) ∩ C

3ε
2
p

)
consists of two connected components, c1 and c2. By

Lemma 3.4, the diameters of c1 and c2 are less than 5ε. Let x1 and x2 be the centroids
of c1 and c2. Then, applying Lemma 2.1 in Bokor et al. (2021),

〈x1 − p, x2 − p〉 ≤ −R2 + 2Rε+ 7ε2,

so the (ε,R)-local structure of P at p is maximal of dimension 1.

Finally, we bound the region near (locally maximal) triangles.
Proposition 4.10. Let 4uvw be an triangle of |X|⊂ Rn, and let P be an ε-sample
of |X|. Then, for all p ∈ P with d(4uvw, p) ≤ ε, and d(∂4uvw, p) ≥ 3R

2 + ε, the
(ε,R)-local structure of P at p is maximal of dimension 2.

Proof. From Assumption 1, for all triangles 4xyz, with x, y, z 6= u, v, w,

d(4uwv,4xyz) > 6(R+ ε),

and hence the connected component C
3ε
2
p of Č 3ε

2
(BR+ε(p) ∩ P ) containing p, consists

only of samples q ∈ P with d(q,4uvw) ≤ ε, as the angle between triangles is bounded
below (Assumption 1).

First, we need to show that Sigε,R(p) = (1, 1), after which Lemma 3.2 implies that

for all q1 ∈ SR+ε
R−ε(p) ∩ P , there exists q2 ∈ SR+ε

R−ε(p) ∩ P such that

‖q2 − q1‖ ≥ 2
√
R2 − ε2 − (1 +

√
2)ε.

16



As d(∂4uvw, p) > 3R
2 + ε, we have the following inclusions

SR+ε
R−ε(p) ∩4uvw ↪→

(
SR+ε
R−ε(p) ∩ P

) 3ε
2

↪→
(
SR+ε
R−ε(p) ∩4uvw

) 5ε
2

↪→
(
SR+ε
R−ε(p) ∩ P

) 7ε
2

↪→
(
SR+ε
R−ε(p) ∩4uvw

) 9ε
2 .

By the bounds in Assumption 1 on the distances between a triangle and cells not
in its boundary, the weak feature size of SR+ε

R−ε(p) ∩ 4uvw is greater than 5ε, and so
the inclusion maps induce isomorphisms

H•
(
SR+ε
R−ε(p) ∩4uvw

) ∼= H•

((
SR+ε
R−ε(p) ∩4uvw

) 5ε
2

)
∼= H•

((
SR+ε
R−ε(p) ∩4uvw

) 9ε
2

)
.

The above homology factors through
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 and

(
SR+ε
R−ε(p) ∩ P

) 7ε
2 so we

have

rk
3ε
2 ,

5ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
=
∣∣H• (SR+ε

R−ε(p) ∩4uvw
)∣∣ ,

and as

|H0

(
SR+ε
R−ε(p) ∩4uvw

)
|= 1, |H1

(
SR+ε
R−ε(p) ∩4uvw

)
|= 1,

it follows that Sigε,R(p) = (1, 1). Now we apply Lemma 3.2 and conclude that the
(ε,R)-local structure of P at p is maximal of dimension 2.

Now, we obtain the regions around not locally maximal i-cells σ (i = 0, 1) in which
we can guarantee that the (ε,R)-local structure of P at a sample p in this region is
not locally maximal. Again, we begin with non-locally maximal vertices.
Remark 5. As we have restricted our considerations to 2-complexes, every triangle
σ is locally maximal; hence, we need only to consider vertices and edges that are not
locally maximal.
Proposition 4.11. Let v be a vertex of |X|⊂ Rn, which is not locally maximal, and
let P be an ε-sample of |X|. Then, for all p ∈ P with

‖p− v‖ ≤ R

2
− 2ε,

the (ε,R)-local structure of P at p is not maximal.

Proof. There are several cases we need to consider, which we can classify by the
homology of ∂BR(v) ∩ |X|:

1. |H0 (∂BR(v) ∩ |X|)| = n, |H1 (∂BR(v) ∩ |X|)| = 0, n 6= 2,
2. |H0 (∂BR(v) ∩ |X|)| = 2, |H1 (∂BR(v) ∩ |X|)| = 0,
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3. |H0 (∂BR(v) ∩ |X|)| = 1, |H1 (∂BR(v) ∩ |X|)| = 1,
4. |H0 (∂BR(v) ∩ |X|)| = 1, |H1 (∂BR(v) ∩ |X|)| = n, n ≥ 2.

In each of these cases, the following argument holds. Let Cp be the connected

component of BR+ε(p) ∩ |X| which contains the projection of p to |X|, and let C
3ε
2
p

be the connected component of
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 . As P is a ε-sample of |X|, we have

the following inclusions

SR+ε
R−ε(p) ∩4uvw ↪→

(
SR+ε
R−ε(p) ∩ P

) 3ε
2

↪→
(
SR+ε
R−ε(p) ∩4uvw

) 5ε
2

↪→
(
SR+ε
R−ε(p) ∩ P

) 7ε
2

↪→
(
SR+ε
R−ε(p) ∩4uvw

) 9ε
2 .

By the bounds in Assumption 1 on
• the angle betwen edges at a common vertex,
• the distance between vertices,
• the angles between triangles with a common vertex or edge,
• the distance between vertices and cells they do not intersect with,

the weak feature size of SR+ε
R−ε(p) ∩ C

3ε
2
p is greater than 5ε, and we have the following

isomorphism on homology induced by the inclusions above

H•
(
SR+ε
R−ε(p) ∩ |X|

) ∼= H•

((
SR+ε
R−ε(p) ∩ |X|

) 5ε
2

)
∼= H•

((
SR+ε
R−ε(p) ∩ |X|

) 9ε
2

)
.

The above homology factors through
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 and

(
SR+ε
R−ε(p) ∩ P

) 7ε
2 so we

have

rk
3ε
2 ,

7ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
=
∣∣H• (SR+ε

R−ε(p) ∩ |X|
)∣∣ .

As ‖p− v‖ ≤ R
2 − 2ε, we have∣∣H• (SR+ε

R−ε(p) ∩ |X|
)∣∣ = |H• (∂BR(v) ∩ |X|)| ,

giving

rk
3ε
2 ,

7ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
= |H• (∂BR(v) ∩ |X|)| .

Case 1: |H0 (∂BR(v) ∩ |X|)| = n, |H1 (∂BR(v) ∩ |X|)| = 0, n 6= 2

By the above, we have Sig(p) = (n, 0), n 6= 2, and so the (ε,R)-local structure of
P at p is not maximal.

Case 2: |H0 (∂BR(v) ∩ |X|)| = 2, |H1 (∂BR(v) ∩ |X|)| = 0

18



By the above, we have Sig(p) = (2, 0). Let C2ε
p be the connected component of

Č 3ε
2

(
SR+ε
R−ε(p) ∩ P

)
containing p.

Assume that v is a face of some triangle 4uvw. Then by the bounds placed
on angles between edges, and distances between edges without a common face,
edges and vertices which are not faces, and vertices and triangles they are not a
face of (see Assumption 1), and Lemma 3.5 at least one connected component in(
SR+ε
R−ε(p) ∩ C

3ε
2
p

) 3ε
2

has a diameter greater than 2
√

2ε. Thus, the (ε,R)-local structure

of P at p is not maximal.
If v is only the face of edges, then by the bounds placed on angles between edges,

and distances between edges without a common face, edges and vertices which are
not faces, and vertices and triangles they are not a face of (see Assumption 1), both
connected components come from two edges uv and wv, Lemma 2.1, in Bokor et al.
(2021) and Lemma 3.4 give that the (ε,R)-local structure of P at p is not maximal.

Case 3: |H0 (∂BR(v) ∩ |X|)| = 1 |H1 (∂BR(v) ∩ |X|)| = 1

Again, we have Sig(p) = (1, 1) so there are at least three triangles having v as a
common vertex. Let pX be the closest point in |X| to p, and let x1 ∈ ∂BR(p)∩ |X| be
colinear with v and pX , then there is q1 ∈ SR+ε

R−ε ∩ P with ‖q1 − x1‖ ≤ ε.
Now take any q2 ∈ SR+ε

R−ε ∩P , and let x2 be the point in |X|∩∂BR(p) closest to q2.
Then from Lemma 3.1

‖q2 − x2‖ ≤
√

2ε.

Consider the rays L1, L2 from v through x1, x2 respectively, and assume d(p, L1) ≤ ε.

x2

v

x1

pX

Fig. 5: d(q2, H2) ≤ ε

We have

‖x1 − v‖ = ‖x1 − pX‖+ ‖pX − v‖ ≤
3R

2
− 2ε,
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‖x2 − v‖ ≤ R+ ε,

and so

‖x2 − x1‖ = ‖x2 − v‖2 + ‖x1 − v‖2 − 2‖x2 − v‖‖x1 − v‖2 cos 6 x1vx2

≤
(

3R

2
− 2ε

)2

+ (R+ ε)2 −
(

3R

2
− 2ε

)
(R+ ε) cosx1vx2.

By condition 13 in Assumption 1 the angle between them is bounded above by
Ψ3(ε,R), so

‖x2 − x1‖ ≤ 2
√
R2 − ε2 − (1 +

√
2)ε,

and so
‖q2 − q1‖ ≤ 2

√
R2 − ε2 − (2 + 2

√
2)ε.

Thus, the (ε,R)-local structure of P at p is not maximal.

Case 4: |H0 (∂BR(v) ∩ |X|)| = 1, |H1 (∂BR(v) ∩ |X|)| = n, n ≥ 2

By the argument at the start of this proof, Sig(p) = (1, n), n ≥ 2 and so the
(ε,R)-local structure of P at p is not maximal.

Next, we bound the region near edges that are not locally maximal.
Proposition 4.12. Let uv be an edge of |X|⊂ Rn, which is not locally maximal, and
let P be an ε-sample of |X|. Then, for all p ∈ P with d(uv, p) ≤ R

2 −2ε, the (ε,R)-local
structure of P at p is not maximal.

Proof. If an edge uv is not locally maximal, then there is at least one triangle 4uvw.
We consider 3 cases:

1. there is a unique triangle 4uvw with uv in the boundary,
2. there are exactly two triangles 4uvw1 and 4uvw2 with uv in their boundaries,
3. there are three or more triangles 4uvw1,4uvw2 and 4uvw3 with uv in their

boundaries.
Recall that we restrict our attention to the connected components Cp, C

3ε
2
p of

SR+ε
R−ε(p) ∩ |X| and

(
SR+ε
R−ε(p) ∩ P

) 3ε
2 which contains p.

By the bounds in Assumption 1 on
• the angle betwen edges at a common vertex,
• the distance between edges that do not have a common face,
• the angles between triangles with a common edge,
• the distance between edges and cells they do not intersect with,

the weak feature size of Cp is greater than 5ε. Hence by the same argument as at the
start of the poof of Proposition 4.11,

Sigε,R(p) = (|H0 (∂BR(m) ∩ |X|)| , |H1 (∂BR(m) ∩ |X|)|) .
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Thus, in cases 1 and 3, we get Sig(p) = (1, 0) and Sig(p) = (1, n) for n ≥ 3
respectively.

In case 2, we get Sig(p) = (1, 1), and so need to check the geometric condition. By
Lemma 3.3, there is a q1 ∈ SR+ε

R−ε(p) ∩ P such that for all q2 ∈ SR+ε
R−ε(p) ∩ P

‖q2 − q1‖ < 2
√
R2 − ε2 − (1 +

√
2)ε,

and so the (ε,R)-local structure of P at p is not maximal.
Hence, in all 3 cases, the (ε,R) local structure of P at p is not maximal.

5 2-Complex Algorithm and Correctness

In this section, we present a set of algorithms, which together, recover the structure of
X from an ε-sample P of an embedding (X,Θ) ⊂ Rn. Theorem 5.25 states that given
an ε-sample P of an embedded 2 complex |X|= (X,ΘX) ⊂ Rn satisfying Assump-
tion 1, we can recover the structure of X using this algorithm. There is a sequence of
lemmas (Lemmas 5.9 to 5.24), which culminates in the ‘big theorem’ (Theorem 5.25).
The proofs of the lemmas are in Appendix B.

The algorithm partitions P into PLM and PNLM , such that for each p ∈ PLM
the (ε,R)-local structure of P at p is maximal, and for each p ∈ PNLM the (ε,R)-
local structure of P at p is not maximal. We then detect the number of vertices, the
number of edges, the number of triangles and the incidence operator. To obtain PLM
and PNLM , we use

∆ε,R : P → {0, 1},
see Algorithm 1.

Let Cp be the samples q ∈ P in the connected component containing p in the
threshold graph

Gp = G3ε (BR+ε(p) ∩ P )

with ‖q−p‖ ∈ [R−ε,R+ε]. In the definitions of (ε,R)-local structure (Definitions 4.4
and 4.5), we used

rk
3ε
2 ,

7ε
2

•
(
SR+ε
R−ε(p) ∩ P

)
,

which by the Nerve Lemma (Corollary 4G.3 Hatcher (2000)) is equal to the rank,
RK•, of the map

H•

(
Č 3ε

2

(
SR+ε
R−ε(p) ∩ Cp

))
→ H•

(
Č 7ε

2

(
SR+ε
R−ε(p) ∩ Cp

))
induced by the inclusion

Č 3ε
2

(
SR+ε
R−ε(p) ∩ P

)
↪→ Č 7ε

2

(
SR+ε
R−ε(p) ∩ P

)
.

Hence, ∆ε,R(p) returns 0 if the (ε,R)-local structure of P at P is not maximal, and
returns 1 if it is maximal. Then,

PNLM = ∆−1
ε,R(0)
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and
PNLM = ∆−1

ε,R(1).

Remark 6. We can appeal to the Nerve Lemma, as the balls used in the con-
struction of Č 3ε

2

(
SR+ε
R−ε(p) ∩ Cp

)
and Č 7ε

2

(
SR+ε
R−ε(p) ∩ Cp

)
lead us to good covers of(

SR+ε
R−ε(p) ∩ P

) 3ε
2 and

(
SR+ε
R−ε(p) ∩ P

) 7ε
2 respectively. To see that these covers satisfy

the ‘every non-empty intersection is contractible’ condition required to be a good cover,
note that we are using the Čhech complex, rather than the Viertoris-Rips complex.
Combining this with the linearity of the embedding and the assumptions placed on both
ε and R, we have covers that satisfy the Nerve Lemma.

Algorithm 1: ∆ε,R(p)

Data: An ε-dense sample P of an embedded 2-complex |X|, a point p ∈ P .
Result: 0 if the (ε,R)-local structure of P at p is not maximal,

1 if the (ε,R)-local structure of P at p is maximal.
begin
Gp ←− {q ∈ P | ‖p− q‖≤ R+ ε};
connect q, q′ ∈ Gp if ‖q − q′‖≤ 3ε;
Cp ←− {q ∈ Gp | q is path connected to p in Gp};
remove q ∈ Cp if ‖p− q‖ ≥ R− ε;
if RK0 = 0 and RK1 = 0 then

return 1
else if RK0 = 1 and RK1 6= 1 then

return 0
else if RK0 = 1 and RK1 = 1 then

if ∀q1, q2 ∈ Cp, ∃q0 such that

‖q1 − q0‖, ‖q2 − q0‖, ‖q2 − q1‖ ∈ [
√

3(R2 − ε2),
√

3R] then
return 1

else
return 0

else if RK0 = 2 and RK1 = 0 then
if max {D(c1),D(c2)} ≤ 5ε then

if 〈q1 − p, q2 − p〉 > −R2 + 2Rε− 7ε2 then
return 1

else
return 0

else
return 0

else if RK0 = n, n 6= 0, 1, 2 and RK1 = 0 then
return 0

After we have PLM , we use the function

Dε,R(p) : PLM → { 0, 1, 2 },
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see Algorithm 2 to determine what dimension of (ε,R)-local structure each sample in
PLM has.

Algorithm 2: Dε,R(p)

Data: An ε-dense sample P of an embedded 2-complex |X|, a point p ∈ P
such that the (ε,R)-local structure of P at p is maximal.

Result: 0 if the (ε,R)-local structure of P at p is maximal of dimension 0,
1 if the (ε,R)-local structure of P at p is maximal of dimension 1,
2 if the (ε,R)-local structure of P at p is maximal of dimension 2.

begin
Gp ←− {q ∈ P | ‖p− q‖≤ R+ ε};
connect q, q′ ∈ Gp if ‖q − q′‖≤ 3ε;
Cp ←− {q ∈ Gp | q is path connected to p in Gp};
remove q ∈ Cp if ‖p− q‖≤ R− ε;
if RK0 = 0 and RK1 = 0 then

return 0
else if RK0 = 2, n 6= 0, 1, 2 and RK1 = 0 then

return 1
else if RK0 = 1, n 6= 0, 1, 2 and RK1 = 1 then

return 2

Recall that our end goal is to learn the combinatorial structure of X. We begin by
learning the number of triangles, locally maximal edges, and locally maximal vertices.
Consider the following three subsets of PLM :

PLM,2 = {p ∈ PLM | Dε,R(p) = 2} ,
PLM,1 = {p ∈ PLM | Dε,R(p) = 1} ,
PLM,0 = {p ∈ PLM | Dε,R(p) = 0} .

When partitioning P into PLM and PNLM , there is a grey region where a sample p
could be in either of these two sets. This presents a problem for learning the combina-
torics of X from the partitioning PLM and PNLM . We can overcome this, by cleaning
PLM . In particular, we clean PLM,2 and PLM,1.

We begin by introducing the notion of a connected component of Č 3ε
2

(PLM,1) span-

ning an edge, and then introduce the notion of a connected component of Č 3ε
2

(PLM,2)
spanning a triangle.
Definition 5.1 (Spanning an edge). We say a connected component of Č 3ε

2
(PLM,1)

spans a locally maximal edge uv if it contains a sample p within ε of the midpoint of
uv.
Definition 5.2 (Spanning a triangle). We say a connected component of Č 3ε

2
(PLM,2)

spans a triangle 4uvw if it contains a sample p within ε of the midpoint of 4uvw.
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We require some geometric conditions on when a connected component spans an
edge or a triangle. For an edge, we will use the diameter of the connected component
as a condition.
Proposition 5.3. A connected component C of Č 3ε

2
(PLM,1) spans a locally maximal

edge uv if and only if D(C) ≥ 3R
2 − 2ε.

Unfortunately, it is not immediately clear that such a test is suitable for detecting
components that span triangles. For instance, consider a complex which consists of
a single triangle, its three edges, and the three required vertices. While heuristically,
it is unlikely to occur, the sampling could lead to 2 connected components C1, C2 ∈
Č 3ε

2
(PLM,2): one which is far away from the boundary of the triangle, and one that

is surrounded by points in PNLM , both with large diameters. In fact, the one we
wish to say is spanning, say C1, will have a smaller diameter than the other one, C2.
Note, however, that as C2 does not contain a sample p near the midpoint of 4uvw, if
D(C1) ≤ D(C2), then C2 contains a non-contractible loop. However, a sample p ∈ P
near the midpoint m4uvw of a triangle 4uvw is not near any samples q /∈ PLM,2, and
so we can exploit this fact to obtain a geometric test.
Proposition 5.4. A connected component C of Č 3ε

2
spans a triangle 4uvw if and

only if there is a point p ∈ C such that

BR
2 +ε(p) ∩ P ⊂ PLM,2.

We now have geometric conditions for determining if a connected component
of Č 3ε

2
(PLM,2)/Č 3ε

2
(PLM,1) spans a triangle/edge respectively. Next, show that

the locally maximal vertices of X are in bijection with connected components of
Č 3ε

2
(PLM,0), the locally maximal edges of X are in bijection with the spanning con-

nected components of Č 3ε
2

(PLM,1), and that the triangles of X are in bijection with

the spanning connected components of Č 3ε
2

(PLM,2).
We begin with the locally maximal vertices.

Proposition 5.5. The connected components of Č 3ε
2

(PLM,0) are in bijection with the
set VLM of locally maximal vertices of X.

Next, we show that the edge spanning components are in bijection with the locally
maximal edges.
Proposition 5.6. The spanning components of Č 3ε

2
(PLM,1) are in bijection with the

set ELM of locally maximal edges of X.
Finally, we show that the spanning components of Č 3ε

2
(PLM,2) are in bijection with

the triangles of X.
Proposition 5.7. The spanning components of Č 3ε

2
(PLM,2) are in bijection with the

set T of triangles in X.
Having identified the locally maximal cells XLM of X, we could learn the combina-

torial structure of X by identifying the structure of XNLM from PNLM , and combining
this with what we know about XLM from PLM . The process in Bokor et al. (2021)
could be applied, but this requires the existence of some ε̃ such that PNLM is a ε̃-
sample of XNLM satisfying Assumptions 1 in Bokor et al. (2021) This would impose
stricter assumptions than Assumption 1, but after ensuring these new assumptions
are satisfied, works out of the box.
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To avoid placing stricter assumptions on |X|, we use the idea of witness points
to discover the combinatorics. For each sample p ∈ PNLM , we can examine the
spanning connected components CLM of Č 3ε

2
(PLM,1) and Č 3ε

2
(PLM,2) such that

CLM ∩BR+3ε (p) 6= ∅. In particular, we can use Dε,R(q) for some q ∈ CLM , to deter-
mine of what dimension the local structure is maximal. If there is a q in CLM∩SR+ε

R−ε (p)
such that Dε,R(q) = 1, then p is near a vertex.

If there are no connected components CLM which are (ε,R)-locally maximal of
dimension 1, then p only witnesses samples q ∈ PLM such that the (ε,R)-local
structure of P at q is maximal of dimension 2. Hence, we need to understand the com-
binatorics of |X|\ (ELM ∪ VLM ) where ELM is the set of locally maximal edges and
VLM the set of locally maximal vertices.

In Assumption 1, we assumed that for any triangle 4uvw,

6 uvw, 6 vwu, 6 wuv ≥ π

6
.

This means that for any sample p ∈ PNLM with d(∂4uvw, p) < R+ε for some 4uvw,
there is some sample q ∈ PLM,2 with d(4uvw, q) ≤ ε and d(∂4uvw, p) ≥ R+ ε, such

that ‖q − p‖ ≤ 2
√

2(R+2ε)√
3−1

. Further, q is in a triangle spanning component T .

Similarly, for any sample p ∈ PNLM with d(∂uv, p) < 3R
2 + ε for some edge uv,

there is a sample q ∈ PLM,1 with d(∂uv, p) ≥ 3R
2 + ε such that ‖q − p‖ ≤ 2

√
2(R+2ε)√

3−1
.

Further, q is in an edge spanning component E .
This leads us to say a sample p ∈ PNLM witnesses a spanning connected component

C if
B 2
√

2(R+2ε)√
3−1

(p) ∩ C 6= ∅.

For ease of reading, we set κ = 2
√

2√
3−1

.

Definition 5.8 (Witnessing a spanning component). Let P be an ε-sample P of an
embedded 2-complex |X| satisfying Assumption 1. Then a sample p ∈ PNLM witnesses
an edge/triangle spanning component if

Bκ(R+ε)(p) ∩ C 6= ∅.

To determine the final combinatorial structure of X, we look at the local
neighbourhood of each p ∈ PNLM and look at both

B(R+2ε)κ(p) ∩ Č 3ε
2

(PLM,1)

B(R+2ε)κ(p) ∩ Č 3ε
2

(PLM,2) .

If

B(R+2ε)κ(p) ∩ Č 3ε
2

(PLM,1) 6= ∅
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then we know that p is near a vertex, and the spanning components E of
Č 3ε

2
(PLM,1) that p witnesses, share a boundary vertex. Further, if

B(R+2ε)κ(p) ∩ Č 3ε
2

(PLM,2) 6= ∅

as well, then there are spanning components of Č 3ε
2

(PLM,2) that p witnesses, which
have a vertex in common with the edges.

If only

B(R+2ε)κ(p) ∩ Č 3ε
2

(PLM,2) 6= ∅
we examine how many spanning components T are seen by p, as well as if samples

p ∈ PNLM that witness T , also witness any other spanning components T ′. We use
this information to partition PNLM into {Pi} in Algorithm 5, with a final clean of the
partitions, to account for some special cases. As R ≤ 16ε, for all p ∈ PNLM there is
some spanning connected component C such that BR+ε

κ
(p) ∩ C 6= ∅.

We then label each component Pi as follows, from Algorithms 7 and 8:
• −1 if Pi corresponds to 2 vertices,
• 0 if Pi corresponds to a vertex,
• 1 if Pi corresponds to a vertex and an edge,
• 2 if Pi corresponds to two vertices and an edge,
• 3 if Pi corresponds to just an edge,
• 4 if Pi corresponds to two edges and a vertex,
• 5 if Pi corresponds to three edges and two vertices,
• 6 if Pi corresponds to three edges and a vertex,
• 7 if Pi corresponds to three edges and three vertices,
• 8 if Pi corresponds to three edges,
• 9 if Pi corresponds to two edges,

Algorithm 3: Spanning triangle components

Data: Parameters ε,R and PLM,1.
Result: The set of triangle spanning components.
begin

Initialise empty set T ;

Let C be the set of connected components of Č 3ε
2

(PLM,2);

for T ∈ C do
if ∃p ∈ C such that BR/2+ε(p) ∩ P ⊂ PLM,2 then

Add T to T ;

return T
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Algorithm 4: Spanning edge components

Data: Parameters ε,R and PLM,1.
Result: The set of triangle spanning components.
begin

Initialise empty set E;

Let C be the set of connected components of Č 3ε
2

(PLM,2);

for E ∈ C do
if D(T ) ≥ 3R

2 − 2ε then
Add E to E;

return E

Algorithm 5: Partitioning PNLM

Data: An ε-dense sample P of an embedded 2-complex |X|, partitioned into
PNLM , PLM,0, PLM,1, PLM,2.

Result: A partition {Pi} of PNLM , and for each Pi, two sets SE(Pi), ST (Pi).
begin

For each p ∈ PNLM , find all the edge spanning components E such that
E ∩B(R+2ε)κ(p) 6= ∅, and place them in SE(p);

Find all the triangle spanning components T such that
T ∩B(R+2ε)κ(p) 6= ∅, and place them in ST (p);

Partition PNLM into {Pi } such that for each p, q ∈ Pi, SE(p) = SE(q)
and ST (p) = ST (q);

Assign SE(Pi) and ST (Pi) to each Pi;
for Pi and Pj with SE(Pj) ⊆ SE(Pi) and ST (Pj) ⊆ ST (Pi) do

if SE(Pj), ST (Pj) 6= ∅ then
Merge Pj into Pi with labels SE(Pi), ST (Pi);

else if |ST (Pj)|≥ 2 and ∀p ∈ Pj such that Sigε,R(p) = (n, 0), n ∈ Z≥0

then
Merge Pj into Pi with labels SE(Pi), ST (Pi);

return {Pi}, and SE(Pi), ST (Pi) for each Pi
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Algorithm 6: Order {Pi}
Data: An ε-dense sample P of an embedded 2-complex |X|, partition {Pi} of

PNLM with two sets SE(Pi), ST (Pi) for each Pi and partitions of
PLM,0, PLM,1, PLM,2.

Result: Two sets P 1, P 2 ⊂ {Pi }.
begin

Initialise empty P 1 and P 2;
for Pi ∈ {Pi} do

if SE(Pi) 6= ∅ then
Add Pi to P 1

else if ∃p ∈ Pi such that Sig(p) 6= (1, n) then
Add Pi to P 1

else if |ST (Pi)|6= 1 then
Add Pi to P 1

else
Add Pi to P 2

return P 1, P 2

Algorithm 9: Number of triangles, edges and vertices.

Data: An ε-dense sample P of an embedded 2-complex |X|, partitions of
PNLM , PLM,0, PLM,1, PLM,2 and the labelled list C from Algorithm 8.

Result: The triangles, edges, and vertices in X.
begin

Initialise an empty weighted graph B;
∀ spanning components T of PLM,2, add weight 2 node to B, labelled with
T ;
∀ spanning components E of PLM,1, add weight 1 node to B, labelled with
E ;
∀ components V of PLM,0, add weight 0 node to B, labelled with V;
for Pi ∈ C do

if Pi has label −1 then
Add 2 weight 0 nodes to B, labelled with Pi;

else if Pi has label 0 then
Add weight 0 node to B, labelled with Pi;

else if Pi has label 1 then
Add 2 weight 0 nodes to B, labelled with Pi;
Add weight 1 node to B, labelled with Pi;

else if Pi has label 2 then
Add weight 0 node to B, labelled with Pi;
Add weight 1 node to B, labelled with Pi;

else if Pi has label 3 then
Add two weight 0 nodes to B, labelled with Pi;
Add weight 1 node to B, labelled with Pi;

else if Pi has label 4 then
Add weight 1 node to B, labelled with Pi;

else if Pi has label 5 then
Add weight 0 node to B, labelled with Pi;
Add two weight 1 nodes to B, labelled with Pi;

else if Pi has label 6 then
Add two weight 0 nodes to B, labelled with Pi;
Add three weight 1 nodes to B, labelled with Pi;

else if Pi has label 7 then
Add three weight 0 nodes to B, labelled with Pi;
Add three weight 1 nodes to B, labelled with Pi;
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Algorithm 7: Classification of P 1

Data: An ε-dense sample P of an embedded 2-complex |X|, P 1, and
partitions of PNLM , PLM,0, PLM,1, PLM,2.

Result: A labeled list C, where the label for Pi is −1 if Pi corresponds to 2
vertices, 0 if Pi corresponds to a vertex, 1 if Pi corresponds to a
vertex and an edge, 2 if Pi corresponds to two vertices and an edge,
3 if Pi corresponds to just an edge.

begin
Initialise empty list C;
for Pi ∈ P 1 do

if |SE(Pi)|= 1 and ST (Pi) = ∅ then
if E /∈ SE(Pj)∀Pj 6= Pi then

Add Pi to C with label −1;

else if ∃Pj 6= Pi such that E ∈ SE(Pj) then
Add Pi to C with label 0;

else if SE(Pi) 6= ∅ then
Add Pi to C with label 0;

else
for T ∈ ST (Pi) do

Let LN(T ) = {Pk | T ∈ ST (Pk)}
Let N(Pi) =

⋂
T ∈ST (Pi)

LN(T );

if N(Pi) = {Pi, Pk} then
Add Pi to C with label 1;
Add Pk to C with label 0, unless Pk is already in C;

else if N(Pi) = {Pi, Pk, Pl} then
Add Pi to C with label 3;
Add Pk to C with label 0, unless Pk is already in C;
Add Pl to C with label 0, unless Pl is already in C;

if ∃Pi ∈ P 1 \ C then
Add Pi to C with label 2;

return C

The following lemmas together show that Algorithms 5, 7 and 8 correctly partition
PNLM and label the partitions Pi appropriately.
Lemma 5.9. Let uv be a locally maximal edge of X, such that u, v are only faces
of uv. Then, there is a unique partition P1 of PNLM which witnesses E, where E is
the edge spanning component corresponding to uv. Further, P1 is assigned label −1 by
Algorithms 7 and 8.
Lemma 5.10. Let uv be a locally maximal edge of X, such that u and/or v is the
face of some locally maximal cell σ ∈ X, σ 6= uv. Then, there are partitions P1, P2
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Algorithm 8: Classification of P 2

Data: An ε-dense sample P of an embedded 2-complex |X|, P 2, and
partitions of PNLM , PLM,0, PLM,1, PLM,2, a labelled list C obtained
from Algorithm 7.

Result: A labelled list C.
begin

for Pi ∈ P 2 do
if Pi /∈ C then

Let LN = {Pk | T ∈ ST (Pk)};
if LN ∩ P 2 = {Pi, Pk, Pl} then

Add Pi, Pk, Pl to C with label 3;

else if LN ∩ P 2 = {Pi, Pk} then
Add Pi to C with label 3;
Add Pl to C with label 4;

else if LN ∩ P 2 = {Pi} then
if LN = {Pi} then

Add Pi to C with label 7;

else if LN = {Pi, Pk} and Pk has label 0 then
Add Pi to C with label 5;

else if LN = {Pi, Pk} and Pk has label 2 then
Add Pi to C with label 4;

else if LN = {Pi, Pk, Pl} and Pk has label 0, Pl label 1 then
Add Pi to C with label 4;

else if LN = {Pi, Pk, Pl} and Pk has label 1, Pl label 2 then
Add Pi to C with label 3;

else if LN = {Pi, Pk, Pl} and Pk has label 0, Pl label 0 then
Add Pi to C with label 6;

else if LN = {Pi, Pk, Pl, Pj} and Pk, Pl, Pj have label 0 then
Add Pi to C with label 8;

else if LN = {Pi, Pk, Pl, Pj , Pm} and Pk, Pl, Pj have label 0
and Pm has label 3 then

Add Pi to C with label 9;

return C

of PNLM , which witness E, where E is the edge spanning component corresponding to
uv. Further, P1 and P2 are assigned label 0 by Algorithms 7 and 8.
Lemma 5.11. Let 4uvw be a triangle of X, such that for all locally maximal cells
σ ∈ X with σ 6= 4uvw, we have

u, v, w /∈ σ.
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Then, there is a unique partition P1 of PNLM which witness T , where T is the
edge spanning component corresponding to 4uvw. Further, P1 is given label 7 by
Algorithms 7 and 8.
Lemma 5.12. Let 4uvw be a triangle of X, such that there is some locally maximal
cell σ ∈ X with σ 6= 4uvw, such that v ∈ σ, without loss of generality, and for all
locally maximal τ ∈ X, τ 6= σ,4uvw, either 4uvw ∩ τ = v or 4uvw ∩ τ = ∅.

Then, there are exactly two partitions P1, P2 of PNLM which witness T , where T
is the edge spanning component corresponding to 4uvw. Further, P1 is given label 0
and P2 label 5 by Algorithms 7 and 8.
Lemma 5.13. Let 4uvw be a triangle of X, such that there is some locally maximal
cell σ ∈ X with σ 6= 4uvw, such that v ∈ σ, without loss of generality, and for all
locally maximal τ ∈ X, τ 6= σ,4uvw, either 4uvw ∩ τ = uv or 4uvw ∩ τ = ∅.

Then, there are exactly two partitions P1, P2 of PNLM which witness T , where T
is the edge spanning component corresponding to 4uvw. Further, P1 is given label 0
and P2 label 5 by Algorithms 7 and 8.
Lemma 5.14. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1 6= σ2 ∈ X with σ1, σ2 6= 4uvw, such that

σ1 ∩4uvw = v

σ2 ∩4uvw = u

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = v,
2. τ ∩4uvw = u,
3. τ ∩4uvw = ∅.

Then, there are exactly three partitions P1, P2, P2 of PNLM which witness T , where
T is the edge spanning component corresponding to 4uvw. Further, P1, P2 are given
label 0 and P3 label 6 by Algorithms 7 and 8.
Lemma 5.15. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1 6= σ2 ∈ X with σ1, σ2 6= 4uvw, such that

σ1 ∩4uvw = uv

σ2 ∩4uvw = v

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = uv,
2. τ ∩4uvw = v,
3. τ ∩4uvw = ∅.

Then, there are exactly three partitions P1, P2, P2 of PNLM which witness T , where
T is the edge spanning component corresponding to 4uvw. Further, P1 has label 0,
P2 label 1 and P3 label 4 by Algorithms 7 and 8.
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Lemma 5.16. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1 6= σ2 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = uv

σ2 ∩4uvw = w

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = uv,
2. τ ∩4uvw = w,
3. τ ∩4uvw = ∅.

Then, there are exactly three partitions P1, P2, P2 of PNLM which witness T , where
T is the edge spanning component corresponding to 4uvw. Further, P1 has label 0,
P2 label 2 and P3 label 9 by Algorithms 7 and 8.
Lemma 5.17. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = u

σ2 ∩4uvw = v

σ3 ∩4uvw = w

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = u,
2. τ ∩4uvw = v,
3. τ ∩4uvw = w,
4. τ ∩4uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which witness T ,
where T is the edge spanning component corresponding to 4uvw. Further, P1, P2 and
P3 are labelled with 0 and P4 with 8 by Algorithms 7 and 8.
Lemma 5.18. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = uv

σ2 ∩4uvw = v

σ3 ∩4uvw = w

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = uv,
2. τ ∩4uvw = v,
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3. τ ∩4uvw = w,
4. τ ∩4uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which witness T ,
where T is the edge spanning component corresponding to 4uvw. Further, P1 is
labelled with 1, P2, P3 with 0 and P4 with 9 by Algorithms 7 and 8.
Lemma 5.19. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = uv

σ2 ∩4uvw = u

σ3 ∩4uvw = v

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = uv,
2. τ ∩4uvw = u,
3. τ ∩4uvw = v,
4. τ ∩4uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which witness T ,
where T is the edge spanning component corresponding to 4uvw. Further, P1 is
labelled with 3, P2, P3 with 0 and P4 with 4 by Algorithms 7 and 8.
Lemma 5.20. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = uv

σ2 ∩4uvw = vw

σ3 ∩4uvw = v

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = uv,
2. τ ∩4uvw = vw,
3. τ ∩4uvw = v,
4. τ ∩4uvw = ∅.

Then, there are exactly four partitions P1, P2, P3, P4 of PNLM which witness T ,
where T is the edge spanning component corresponding to 4uvw. Further, P1 is
labelled with 0, P2, P3 with 1, and P3 with 3 by Algorithms 7 and 8.
Lemma 5.21. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3, σ4 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = u
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σ2 ∩4uvw = v

σ3 ∩4uvw = w

σ4 ∩4uvw = uv

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = u,
2. τ ∩4uvw = v,
3. τ ∩4uvw = w,
4. τ ∩4uvw = uv
5. τ ∩4uvw = ∅.

Then, there are exactly five partitions P1, P2, P3, P4, P5 of PNLM which witness T ,
where T is the edge spanning component corresponding to 4uvw. Further, P1, P2, P3

are labelled with 0, and P4 with 8 by Algorithms 7 and 8.
Lemma 5.22. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3, σ4 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = u

σ2 ∩4uvw = v

σ3 ∩4uvw = vw

σ4 ∩4uvw = uv

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = u,
2. τ ∩4uvw = v,
3. τ ∩4uvw = w,
4. τ ∩4uvw = uv
5. τ ∩4uvw = vw
6. τ ∩4uvw = ∅.

Then, there are exactly five partitions P1, P2, P3, P4, P5 of PNLM which witness T ,
where T is the edge spanning component corresponding to 4uvw. Further, P1, P2 are
labelled with 0, P3 with 1, and P4, P5 with 3 by Algorithms 7 and 8.
Lemma 5.23. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3, σ4, σ5 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = u

σ2 ∩4uvw = v

σ3 ∩4uvw = w

σ4 ∩4uvw = uv

σ5 ∩4uvw = vw
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and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = u,
2. τ ∩4uvw = v,
3. τ ∩4uvw = w,
4. τ ∩4uvw = uv
5. τ ∩4uvw = vw
6. τ ∩4uvw = ∅.

Then, there are exactly five partitions P1, P2, P3, P4, P5, P6 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to 4uvw. Further,
P1, P2, P3 are labelled with 0, P4, P5, P6 with 3 by by Algorithms 7 and 8.
Lemma 5.24. Let 4uvw be a triangle of X, such that there are some locally maximal
cells σ1, σ2, σ3, σ4, σ5, σ6 ∈ X with σi 6= 4uvw and σi 6= σj for i 6= j, such that

σ1 ∩4uvw = u

σ2 ∩4uvw = v

σ3 ∩4uvw = w

σ4 ∩4uvw = uv

σ5 ∩4uvw = vw

σ6 ∩4uvw = uw

and for all other locally maximal cells τ ∈ X, either
1. τ ∩4uvw = u,
2. τ ∩4uvw = v,
3. τ ∩4uvw = w,
4. τ ∩4uvw = uv,
5. τ ∩4uvw = vw,
6. τ ∩4uvw = uw,
7. τ ∩4uvw = ∅.

Then, there are exactly six partitions P1, P2, P3, P4, P5, P6 of PNLM which wit-
ness T , where T is the edge spanning component corresponding to 4uvw. Further,
P1, P2, P3 are labelled with 0, P4, P5, P6 with 3 by Algorithms 7 and 8.
Theorem 5.25. Let P be an ε-sample of an embedded 2-complex |X|⊂ Rn satisfying
Assumption 1, and let B be the graph obtained from Algorithm 9.

Then, we can complete B to be the incidence graph of X, to recover the abstract
structure.

Proof. From Propositions 5.5 to 5.7, we correctly identify the locally maximal com-
ponents of X. It remains to show that we correctly learn the number of not locally
maximal cells, and the incidence relationship.

For a locally maximal edge, we need to identify two vertices as its faces. To do so,
we must identify which partition(s) of PNLM correspond to these vertices.

Take a spanning edge component E . Then there is some locally maximal edge uv
corresponding to E . There are two cases to consider:

A: uv is disconnected from every other part of X,
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B: uv is not disconnected every other part of X.
Case A: From Propositions 4.8 to 4.12 and Assumption 1, there is a single partition

Pi ⊂ PNLM which contains points p such that E ∩ B(R+ε)/κ+3ε(p) 6= ∅. Hence, Pi
contains samples p such that either ‖v − p‖ ≤ 3R

2 + ε or ‖u − p‖ ≤ 3R
2 + ε, and Pi

corresponds to u and v. In this case, Pi is labelled with −1 in Algorithm 7. This occurs
only when uv is disconnected from the rest of |X|; hence, we infer the two boundary
vertices.

Case B: As uv is not disconnected, there is some locally maximal cell σ ∈ X, σ 6= uv
such that either u or v is a vertex of σ. Without loss of generality, let v ∈ σ. For
the vertices u and v let the set of locally maximal faces they see be S(u) and S(v),
respectively. As X is a 2-complex, and uv a locally maximal edge, σ /∈ S(u). Hence,
there are two partitions, Pu, Pv, which correspond to the vertices u and v, respectively.
In this case, Pu and Pv are labelled with 0 in Algorithm 7.

We now need to examine how we identify the faces of triangles.
For a triangle spanning component T , let PT be the set of partitions Pi of PNLM

such that d(T , Pi) ≤ 3ε. There are a few cases we need to consider to ensure we
correctly recover the structure of X:

1. |PT |= 1,
2. |PT |= 2,
3. |PT |= 3,
4. |PT |= 4,
5. |PT |= 5,
6. |PT |= 6.

Let the weight 2 node labelled with E be t.
Case 1 |PT |= 1: Let P1 be the single partition in PT .
This can only occur if the triangle 4uvw corresponding to T does not share any

faces with another cell. Then, P1 corresponds to three edges and three vertices and is
correctly labelled with 7 by Algorithms 7 and 8. Let the corresponding weight 1 nodes
of B be e1, e2, e3 and the weight 0 nodes be v1, v2, v3. We add an edge between t and
e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 2 |PT |= 2: Let PT = {P1, P2}.
This can only occur if the triangle4uvw corresponding to T shares either a vertex,

or an edge and two vertices with other triangles or locally maximal edges. Thus,
either P1 is labelled with 0 and P2 with 5, or P1 is labelled with 2 and P2 with 4 by
Algorithms 7 and 8.

If P1 has label 0 and P2 has label 5, we find the weight 0 node v1 with label P1 and
the three weight 1 nodes e1, e2, e3 and two weight 0 nodes v2, v3 with label P2. Then,
we add an edge between t and each of e1, e2, e3, v1, v2, v3 and between the following
pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 2 and P2 has label 4, we find the weight 1 note e1 and two weight
0 node v1, v2 with label P1, the two weight 1 nodes e2, e3 and one weight 0 nodes v3
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with label P2. We add an edge between t and each of e1, e2, e3, v1, v2, v3 and between
the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 3 |PT |= 3: Let PT = {P1, P2, P3}.
This can only occur if the triangle 4uvw corresponding to T shares either two

vertices, or two vertices and an edge with other triangles or locally maximal edges.
Thus, either P1 and P2 are labelled with 0 and P2 with 6; or P1 is labelled with 0, P2

with 1 and P3 with 4; or P1 is labelled 0, P2 with 2 and P3 with 9.
If P1, P2 have label 0 and P3 has label 6, we find the weight 0 node v1 with label P1,

the weight 0 node v2 with label P2, the three weight 1 nodes e1, e2, e3 and the weight
0 node v3 with label P3. Then add an edge between t and each of e1, e2, e3, v1, v2, v3

and between following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 0, P2 label 1 and P3 label 4, we find the weight 0 node v1 with label
P1, the weight 0 node v2 with label P2, weight 1 node e1 with label P2, the weight 0
node v3 with label P3, and the two weight 1 nodes e2, e3 with label P3. Then add an
edge between t and each of e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 0, P2 label 2 and P3 label 9, we find the weight 0 node v1 with label
P1, the weight 0 node v2 and weight 1 node e1 with label P2, and the weight 1 nodes
e2, e3 and weight 0 node v3 with label P3. Then add an edge between t and each of
e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 4 |PT |= 4: Let PT = {P1, P2, P3, P4}.
This can only occur if the triangle 4uvw corresponding to T shares three vertices,

or three vertices and an edge, or three vertices and two edges with other triangles or
locally maximal edges. Thus, either P1, P2 and P3 are labelled with 0 and P4 with 8;
or P1 is labelled with 1, P2, P3 with 0 and P3 with 9; or P1 with 3, P2, P3 with 0 and
P4 with 4; or P1 is labelled with 0, P2, P3 with 1, and P3 with 3 by Algorithms 7 and 8.

If P1, P2, P3 have label 0 and P4 has label 8, find the weight 0 node v1 with label
P1, weight 0 node v2 with label P2, weight 0 node v3 with label P3, and the three
weight 1 nodes e1, e2, e3 with label P4. Then add an edge between t and each of
e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 1, P2, P3 have label 0, and P4 has label 9, find the weight 0 node
v1 and weight 1 node e1 with label P1, weight 0 node v2 with label P2, weight 0 node
v3 with label P3, and the two weight 1 nodes e2, e3 with label P4. Then add an edge
between t and each of e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).
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If P1 has 3, P2, P3 label 0 and P4 label 4;, find the weight 1 node e1 with label P1,
weight 0 node v1 with label P2, weight 0 node v2 with label P3, and the two weight 1
nodes e2 and weight 0 node e3 with label P4. Then add an edge between t and each
of e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

If P1 has label 0, P2, P3 have label 1, and P4 has label 3, find the weight 0 node v1

with label P1, weight 0 node v2 and weight 1 node e1 with label P2, weight 0 node v3

and weight 1 node e3 with label P3, and the two weight 1 nodes e2 with label P4. Then
add an edge between t and each of e1, e2, e3, v1, v2, v3 and between the following pairs:

(e1, v1), (e1, v2), (e2, v2), (e2, v3), (e3, v3), (e3, v1).

Case 5 |PT |= 5: Let PT = {P1, P2, P3, P4, P5}.
This can occur if the triangle 4uvw corresponding to T shares three vertices and

two edges; or three vertcies and one edge with other triangles or locally maximal edges.
Thus, P1, P2 are labelled with 0, P3 with 1 and P4, P5 with 3; or P1, P2, P3 are labelled
with 0, P4 with 3 and P5 with 9 by Algorithms 7 and 8.

If P1, P2 are labelled with 0, P3 with 1 and P4, P5 with 3 we find the weight 0 node
v1 with label P1, find the weight 0 node v2 with label P2, find the weight 1 node e1

and weight 0 node v3 with label P3, find the two weight 1 nodes e2, e3 with label P4,
and the two weight 1 nodes e2, e3 with label P5. Then add an edge between t and each
of e1, e2, e3, v1, v2, v3 and between ei with label Pi and vj with label Pj if d(Pi, Pj).

If P1, P2, P3 are labelled with 0, P4 with 3 and P5 with 9 we find the weight 0 node
v1 with label P1, find the weight 0 node v2 with label P2, find the weight 0 node v3

with label P3, find the weight 1 node e1 with label P4, and the two weight 1 nodes
e2, e3 with label P5. Then add an edge between t and each of e1, e2, e3, v1, v2, v3 and
between ei with label Pi and vj with label Pj if d(Pi, Pj).

Case 6 |PT |= 6: Let PT = {P1, P2, P3, P4, P5, P6}.
This can only occur if the triangle 4uvw corresponding to T shares three vertices

and two edges, or three vertices and three edges with other triangles or locally maximal
edges. In either case, P1, P2, P3 are labelled with 0, P4, P5, P6 with 3 by Algorithms 7
and 8.

So we find the weight 0 node v1 with label P1, find the weight 0 node v2 with label
P2, find the weight 0 node v3 with label P3, find the weight 1 node e1 with label P4,
the weight 1 node e2 with label P5, and the weight 1 node e3 with label P6. Then add
an edge between t and each of e1, e2, e3, v1, v2, v3 and between ei with label Pi and vj
with label Pj if d(Pi, Pj).

In each of these 6 cases, we have connected the weight 2 node t corresponding to
the cell τ to each weight 1 node e corresponding to an edge σe of τ , as well as to each
weight 0 node v corresponding to a vertex σv of τ . Further, in the process, we also
connect the weight 1 node e and weight 0 node v if σv is a vertex of σe.

We have shown that the weight 2 nodes of B correspond bijectively to the triangles
of X, the weight 1 nodes of B correspond bijectively to the edges of X, and the weight
0 nodes of B correspond bijectively to the vertices of X. We have also shown that for
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any pair of nodes n1, n2 with corresponding cells σ1, σ2, there an edge between them
if and only if σ1 ⊂ σ2 or σ2 ⊂ σ1.

Hence, B is the incidence graph of X.

In this article, we have presented a method for learning the abstract structure X
underlying an embedded 2-simplicial complex |X|= (X,Θ) (satisfying Assumption 1)
from an ε-sample P . For abstract 2-complexes, modelling the embedding is future
work. In particular, to modelling embeddings that are not linear or where we allow
for cells of dimension 2, which are not triangles (along the lines of CW-complexes),
we need to develop the process for learning the faces of locally maximal cells further.

6 Future directions

There are several natural paths for the work in this article to be extended. In partic-
ular, removing the assumption that the maximal dimension of a cell in the complex
is 2 is a direct next step. It is also natural to consider how to modify the algorithm
to allow for non-linear embeddings, in particular using semi-algebraic sets, as well as
what happens when the noise is not assumed to be Hausdorff. These directions form
a sort of ’orthogonal’ basis for future research, as they can be thought of as indepen-
dent problems, but when combined present a rather significant development towards
learning stratified spaces.
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Appendix A Proofs of Geometric Lemmas

Proof 1 (Proof of Lemma 3.1). Consider SR+ε
R−ε(p) ∩ L say C. Consider a point

q ∈ SR+ε
R−ε(p) with d(L, q) ≤ ε. Let qL be the projection of q to L, pL the projection of

p to L.
There are two cases we need to consider,

1. ‖x− qL‖ ≥ ‖qL − pL‖,
2. ‖x− qL‖ < ‖qL − pL‖.

We begin with case 1.
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q
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pL

(A) When p and q are on the same
side of x
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q

qL

xpL

(B) When p and q are on different
sides of x

Fig. A1

We want to bound ‖x− q‖. Note that

‖q − x‖2 = ‖q − qL‖2 + ‖qL − x‖2,
‖qL − x‖ = ‖pL − x‖ − ‖pL − qL‖,

‖pL − qL‖2 = ‖q − p‖2 − (‖p− pL‖+ ‖q − qL‖)2
,

‖pL − x‖2 = ‖x− p‖2 − ‖pL − p‖2.

Hence,

‖q − x‖2

= ‖q − qL‖2 + (‖pL − x‖ − ‖pL − qL‖)2

= ‖q − qL‖2 +

(√
‖q − p‖2 − ‖pL − p‖2 −

√
‖q − p‖2 − (‖p− pL‖+ ‖q − qL‖)2

)2

= ‖q − qL‖2+(√
‖q − p‖2 − ‖pL − p‖2 −

√
‖q − p‖2 − ‖p− pL‖2 − (‖q − qL‖2 + ‖p− pL‖‖q − qL‖)

)
.

Let

A = ‖q − p‖2 − ‖p− pL‖2,
B = ‖q − qL‖2 + ‖p− pL‖‖q − qL‖.

As

‖q − p‖ ≤ R,

‖p− pL‖ ≤
R

2
,

‖q − qL‖ ≤ ε,

we have

A > (R− ε)2 − ε2

B < 3ε2
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and so A > 4B
3 . Then

AB

3
>

4B2

9

A2 −AB > A2 − 4AB

3
+

4B2

9√
A(A−B) > A− 2B

3

−2
√
A(A−B) < −2A+

4B

3

2A−B − 2
√
A(A−B) <

B

3(√
A−
√
A−B

)2

<
B

3

Recall A > 4B
3 , thus

‖q − x‖2 = ‖q − qL‖+
(√

A−
√
A−B

)2

≤ ε2 +
B

3
≤ 2ε

A similar calculation in case 2 gives a smaller bound, so

‖q − x‖ ≤
√

2ε.

Proof 2 (Proof of Lemma 3.2). First, let pH be the projection of p to H, and note
that ‖pH − p‖ ≤ ε. Take q1 ∈ SR+ε

R−ε(p) ∩ P . Let x1 be the point in ∂BR(p)∩H closest
to q1, and qH the projection of q1 to H. Note that pH , qH , x1 are co-linear, lying on
the ray L from pH , and ‖q1 − qH‖ ≤ ε. By Lemma 3.1, ‖q1 − x1‖ ≤

√
2ε.

As H ∩ ∂BR(p) is a circle with radius
√
R2 − ‖pH − p‖2, there is a point x2 ∈

H ∩ ∂BR(p) such that ‖x2 − x1‖ = 2
√
R2 − ‖pH − p‖2. As dH(p,H) ≤ ε, we have

‖x2 − x1‖ ≥ 2
√
R2 − ε2,

and as dH(P,H) ≤ ε, there is q1 ∈ P with ‖q1 − x1‖ ≤ ε. Hence

‖q2 − q1‖ ≥ 2
√
R2 − ε2 − (1 +

√
2)ε.

Proof 3 (Proof of Lemma 3.3). First, let H ′1 be the half plane containing H1 with
bounding line L′ such that D(L,L′) = ε, pH be the projection of p onto H ′1 and pL the
projection of p to L. Then take x1 ∈ H1 such that ‖p − x1‖ = R and pH , pL and x1

are co-linear. Take q1 ∈ P with ‖q1 − x1‖ ≤ ε, so q1 ∈ SR+ε
R−ε(p) ∩ P .

41



Let q2 be a point in SR+ε
R−ε(p) ∩ P . There are two cases to consider: d(q2, H

′
1) ≤ ε

and d(q2, H2) ≤ ε.
If d(q2, H

′
1) ≤ ε, take x2 ∈ ∂BR(p) ∩H ′1 such that x2, pH and the projection of q2

to H ′1 are co-linear. Then by Lemma 3.1 ‖q2 − x2‖ ≤
√

2ε.

L

H1

pL

x1

x2

pH

x̃

Fig. A2: Understanding the behaviour of points near the common boundary of two
half-planes

Consider the triangle formed by x1, ph, x2. By assumption,

‖x̃− pH‖ <
R

2
< R− 7ε,

‖x2 − pH‖ = ‖x1 − pH‖ ≤ R.

Let R̂ =
√
R2 − ‖pH − p‖2. Then

‖x̃− pH‖ < R̂

‖x̃− pH‖ < R̂− 6ε

2R̂‖x̃− pH‖ < 2R̂2 − 12R̂ε

2R̂2 + 2R̂‖x̃− pH‖ < 4R̂2 − 4(1 +
√

2)R̂ε+ (1 +
√

2)ε

2R̂2 + 2R̂

(
‖x̃− pH‖

R̂

)
<
(

2R̂− (1 +
√

2)ε
)2

.

Further,

2R̂2 + 2R̂

(
‖x̃− pH‖

R̂

)
= ‖x1 − pH‖2 + ‖x2 − pH‖2 + 2‖x1 − pH‖‖x2 − ph‖ cos 6 x2phx̃

= ‖x1 − pH‖2 + ‖x2 − pH‖2 − 2‖x1 − pH‖‖x2 − ph‖ cos 6 x2phx1

= ‖x2 − x1‖2,
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so

‖x2 − x1‖ <
√
R2 − ‖pH − p‖2 − (1 +

√
2)ε.

which implies

‖q2 − q1‖ < 2
√
R2 − ε2 − (2 + 2

√
2)ε.

x2

pL

x1

pH

Fig. A3: d(q2, H2) ≤ ε

Now assume d(q2, H2) ≤ ε. Let H ′2 be the half-plane which contains H2 and has
boundary L′ with d(L,L′) = ε. As d(q2, H2) ≤ ε, then there is x2 ∈ ∂BR(p)∩H ′2 with
‖q2 − x2‖ ≤

√
2ε. Hence,

‖x1 − x2‖ ≥ 2
√
R2 − ε2 − (2 + 2

√
2)ε.

If x2 ∈ H ′2 \H2, then by a similar argument to above,

‖x1 − x2‖ ≥ 2
√
R2 − ε2 − (2 + 2

√
2)ε.

If x2 ∈ H2 ( H ′2, by the cosine rule we have

‖x2 − x1‖2 = ‖x2 − pL‖2 + ‖x1 − pL‖2 − 2‖x2 − pL‖‖x1 − pL‖ cos 6 x1pLx2.

Note ‖x1− pL‖ = ‖x1− pH‖+ ‖pH − pL‖, and ‖x2−x1‖ is bounded above by the case
when

6 x1pLx2 = α,

‖x2 − pL‖ = R+ 2ε,
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p

x1

x2

z α

Fig. A4: Bounding the diameter of a set of points

‖x1 − pL‖ = ‖x1 − pH‖+ ‖pH − pL‖ =
3R

2
+ ε.

Hence, we have

‖x2 − x1‖ < (R+ 2ε)2 +

(
3R

2
+ ε

)2

− (R+ 2ε)

(
3R

2
+ ε

)
cosα.

By assumption, α ∈ (0,Ψ(ε,R)), and so

‖x2 − x1‖ < 2
√
R2 − ε2 −

(
2 + 2

√
2
)
ε,

which implies that

‖q2 − q1‖ < 2
√
R2 − ε2 −

(
1 +
√

2
)
ε.

Hence, there is a q1 ∈ SR+ε
R−ε(p) ∩ P such that for all q2 ∈ SR+ε

R−ε(p) ∩ P

‖q2 − q1‖ < 2
√
R2 − ε2 −

(
1 +
√

2
)
ε.

Proof 4 (Proof of Lemma 3.4). By Lemma 3.1, every q ∈ SR+ε
R−ε(p)∩P is with in

√
2ε

of the point x in L with ‖x − p‖ = R. Hence,
(
SR+ε
R−ε(p) ∩ P

) 3ε
2 consists of a single

connected component and it has diameter less than 2
√

2ε.
Proof 5 (Proof of Lemma 3.5). As ‖p−z‖ ≤ R−ε

2 , the intersection SR+ε
R−ε(p)∩T is not

empty, connected, and H1

(
SR+ε
R−ε(p) ∩ T

)
= 0. Further, the intersections SR+ε

R−ε(p)∩L1

and SR+ε
R−ε(p) ∩ L2 are also connected.

Now, let x1 be the point on L1 with ‖q1−p‖ = R and let x2 be the point on L2 with
‖x2 − p‖ = R. As SR+ε

R−ε(p) ∩ T is path connected, x1 and x2 are path connected in T .
Consider the triangle 4x1px2, we have
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‖x1 − x2‖2 = ‖x1 − z‖2 + ‖x2 − z‖2 − 2‖x1 − z‖‖q2 − z‖ cosα

≥
(
R− R− ε

2

)2

+

(
R− R− ε

2

)2

− 2

(
R− R− ε

2

)2

cosα

= 2

(
R+ ε

2

)2

(1− cosα).

Now, as dH(P, T ) ≤ ε, there are points q1, q2 ∈ P with

‖q1 − x1‖, ‖q2 − x2‖ ≤ ε.

Then by the triangle inequality

‖q1 − q2‖2 = 2

(
R+ ε

2

)2

(1− cosα)− 2ε

> 2
√

2ε, as α ∈
[π

6
, π
)

Appendix B Proof of Correctness Lemmas

Proof 6 (Proof of Proposition 5.3). Let C be a connected component of Č 3ε
2

(PLM,1)
which spans a locally maximal edge uv, with midpoint muv. Then, there is a sample
pm ∈ C such that ‖pm −muv‖ ≤ ε.

To show that D(C) ≥ 9R
2 , we show that there are two points xu, xy ∈ uv such that

1. ‖u− xu‖ > 3R
2 + 2ε,

2. ‖v − xv‖ > 3R
2 + 2ε,

3. ‖xu − xv‖ ≥ 3R
2 .

Without loss of generality, we show that xu exists, and

‖xu −muv‖ ≥
3R

4
+ ε.

By Assumption 1, ‖u−v‖ ≥ 6(R+ε). As uv is a line segment, for all η ∈ [0, 9R
4 +3ε]

there is a point xη ∈ uv such that ‖xη − u‖ = η. Letting η = 3R
2 + 2ε, there is a point,

namely xu such that ‖xu − u‖ = 3R
2 + 2ε. As P is an ε-sample, there is a sample pu

such that ‖xu−pu‖ ≤ ε, and hence ‖pu−u‖ > 3R
2 + ε. Thus, the (ε,R)-local structure

of P at pu is maximal of dimension 1.
We can repeat this argument for all η ∈ [ 3R

2 + 2ε, 9R
4 + 3ε], and obtain a path of

points xη ∈ uv and samples pη ∈ P connecting pu to pm.
This also holds when we replace u with v, and hence we have pu and pv. Finally,

we have

‖pu − pv‖ ≥‖xu − xv‖ − ‖pu − xu‖ − ‖pv − xv‖
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≥ 3R

2
− 2ε,

and hence D(C) ≥ 3R
2 − 2ε.

Now, we show that if D(C) ≥ 3R
2 − 2ε, then C spans some locally maximal edge.

If D(C) ≥ 3R
2 − 2ε, then there are points p, q ∈ C with

‖p− q‖ ≥ 3R

2
− 2ε.

As P is an ε-sample of |X|, there are points xp, xq ∈ |X|, with

‖xp − p‖, ‖xq − q‖ ≤ ε.

Let mpq be the midpoint of xp and xq. As p and q are in the same connected
component of Č 3ε

2
(PLM,1), we know there is a sequence of points {qi}mi=0 with q0 =

p, qm = q and for all 0 < i ≤ m, ‖qi−qi−1‖ ≤ 3ε. Again, P is an ε-sample of |X|, and
as qi ∈ PLM,1, ∀0 ≤ i ≤ m, for each qi there is some xi ∈ |X| which is on a locally
maximal edge, and ‖qi − xi‖ ≤ ε. From Assumption 1 and Proposition 4.9, there is a
locally maximal edge, say uv such xi ∈ uv,∀0 ≤ i ≤ m. Let the midpoint of uv be xuv.

We now split into two cases:
I there is some i such that xi = xuv,

II for all i we have xi 6= xuv.
Case I: The connected component C is a spanning connected component, as it

contains a sample which is within ε of the midpoint xuv of the locally maximal edge uv.
Case II: As no qi is within ε of muv, we know that qi ∀0 ≤ i ≤ m are on the same

side of uv. That is, for all qi, without loss of generality,

‖qi − xuv‖ ≤ ‖qi − u‖ ≥
3
√

3

2
R+ 3ε

‖qm − v‖ ≥
3R

2
+ ε.

Further, assume that
‖q0 −muv‖ ≤ ‖qm − xuv‖.

There is another sequence of points {x′j}m
′

j=0 in uv with x′0 = xm and x′m′ = xuv,
and for 0 < j ≤ m′

‖x′j − x′j−1‖ ≤ ε.
Then, there exists q′j ∈ P with

‖q′j − x′j‖ ≤ ε

46



‖q′j − q′j−1‖ ≤ ε∀0 < j ≤ m′

‖q′j − v‖ ≥
3R

2
+ ε.

By Assumption 1 and Proposition 4.9, q′j ∈ PLM,1 for all 0 ≤ j ≤ m′. Hence, each
q′j is in the same connected component C as qm.

Thus, C contains a sample q′m′ which is within ε of the midpoint of the locally
maximal edge uv. Hence, C is a spanning connected component.

Thus a component C of Č 3ε
2

(PLM,1) spans a locally maximal edge uv if and only

if D(C) ≥ 3R
2 − 2ε.

Proof 7 (Proof of Proposition 5.4). First, let C be a connected component of Č 3ε
2

which spans some triangle 4uvw with midpoint m. As P is an ε-sample of X, there is
a sample pm ∈ P with ‖pm−m‖ ≤ ε. As the radius of the inscribed circle of 4uvw is
at least 2R+ 3ε, m is at least 2R+ 3ε from ∂4uvw. Thus, d(pm, ∂4uvw) ≥ 2R+ 2ε.

Hence, for all q ∈ BR
2 +2ε(p) ∩ P , d(q, ∂4uvw) ≥ 3R

2 + ε, and so q ∈ PLM,2.

Now, take p ∈ PLM,2 such that BR
2 +ε(p)∩P ⊂ PLM,2. Then, there is some triangle

4uvw with d(4uvw, p) ≤ ε. As p ∈ PLM,2, we know that d(∂4uvw, p) > R
2 − ε. By

assumption, for all q ∈ BR
2 +ε(p) ∩ P , we have d(∂4uvw, q) > R

2 − ε. Recall that P

is an ε-sample of |X|, so there is a point x ∈ X such that ‖p − x‖ ≤ ε. As 4uvw is
convex, and every BR

2 +ε(p) ∩ P ⊂ PLM,2, we have

d(∂4uvw, x) ≥ R

2
+ 2ε+

R

2
− 2ε = R.

Hence, is a point y ∈ BR
2 +2ε(p) ∩4uvw with

d(∂4uvw, y) ≥ R

2
+ 2ε.

and a sample q ∈ BR
2 +2ε(p) ∩ PLM,2 with ‖q − y‖ ≤ ε.

Now, we can construct a sequence of points {yi}mi=0 ⊂ 4uvw such that ‖yi−yi−1‖ ≤
ε for 1 ≤ i ≤ m, and y0 = x, ym = y. Further, for each yi there is a qi ∈ P with
‖qi − yi‖ ≤ ε, and qi ∈ PLM,2. Note, that this means p and qm are in the same
connected component C of Č 3ε

2
(PLM,2).

Finally, we construct a similar sequence of points {ỹj}m̃j=0 in |X| from y to m4uvw
with ỹ0 = y, ỹm̃ = m4uvw. Again, for each ỹj, there is a q̃j ∈ P with ‖ỹj − q̃j‖ ≤ ε
and q̃j ∈ PLM,2. Hence, the q̃j are in the same connected component of Č 3ε

2
(PLM,2),

and further, this connected component is C.
Proof 8 (Proof of Proposition 5.5). Let VLM be the set of locally maximal vertices of
X. Let v be a locally maximal vertex, then by Proposition 4.8, ∀p ∈ P with ‖p−v‖ ≤ 4ε,
p ∈ PLM,0. In fact, by Assumption 1, any p ∈ P with ‖p− v‖ ≤ 4ε is actually within
ε of v. Hence, every p ∈ PLM,0 within ε of v are in the same connected component of
Č 3ε

2
(PLM,0).
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Now, take a connected component C of Č 3ε
2

(PLM,0). Each p ∈ C is within ε of a
locally maximal vertex vp of X. By Assumption 1, every locally maximal vertex v is
at least 5ε away from any other cell of X, and hence ∀p ∈ C, vp is the same.

Hence, the connected components of Č 3ε
2

(PLM,0) correspond bijectively to the locally
maximal vertices of X.
Proof 9 (Proof of Proposition 5.6). Let ELM ⊂ E be the set of locally maximal edges
in X. By Proposition 5.3, a connected component C of Č 3ε

2
(PLM,1) spans an edge uv

if and only if it contains a sample p within ε of the midpoint m of uv.
If a connected component C is a spanning component, then there is some locally

maximal edge uv with midpoint m such that there is a sample p ∈ C with ‖m−p‖ ≤ ε.
For any locally maximal uv ∈ ELM with midpoint m, there is some sample p ∈ P

such that ‖m − p‖ ≤ ε. Then, by Assumption 1 and proposition 4.9, p ∈ PLM,1, and
so there is some spanning connected component Cuv in Č 3ε

2
(PLM,1).

Now, consider a locally maximal edge uv′, v′ 6= v, and take samples p, q ∈ PLM,2

such that d(uv, p), d(uv′, q) ≤ ε. By Assumption 1, ‖p− q‖ > 6ε, and so p and q are
in different connected components of Č 3ε

2
(PLM,1).

Finally, consider a locally maximal edge u′v′ such that uv and u′v′ do not have a
common vertex. Take samples p, q ∈ PLM,2 such that

d(uv, p), d(u′v′, q) ≤ ε.

Again, by Assumption 1, ‖p − q‖ > 6ε, and so p and q are in different connected
components of Č 3ε

2
(PLM,1).

Hence, each connected component C only consists of samples p with d(uv, p) ≤ ε
for a single locally maximal edge uv.

Thus, the spanning connected components of Č 3ε
2

(PLM,2) are in bijection with the

locally maximal edges of |X|.
Proof 10 (Proof of Proposition 5.7). From Proposition 5.4, a connected component
C of Č 3ε

2
(PLM,2) spans a triangle 4uvw if and only if it contains a sample p within

ε of the midpoint m of 4uvw.
As P is a ε-sample of |X|, for every 4uvw with midpoint m, there is a sample

p ∈ P such that ‖p −m‖ ≤ ε. Hence, there is a spanning connected component C in
Č 3ε

2
(PLM,2).

Now, consider C a spanning component of Č 3ε
2

(PLM,2). Then, as P is a ε-sample,

there is some 4uvw with midpoint m such that there is a sample p ∈ C with ‖p−m‖ ≤
ε.

Consider two triangles 4uvw, 4u′v′w′, and take two samples p, p′ ∈ PLM,2 with

d(4uvw, p), d(4u′v′w′, p′) ≤ ε.
As p, p′ ∈ PLM,2, we know that

d(∂4uvw, p), d(∂4u′v′w′, p′) > R+ ε,
and so by Assumption 1, ‖p− p′‖ > 6ε.
Hence, the spanning components of Č 3ε

2
(PLM,2) are in bijection with the triangles

of X.
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Proof 11 (Proof of Lemma 5.9). As uv is a locally maximal edge, there is a corre-
sponding edge spanning component E. As u, v are not faces of any other cell σ ∈ X,
by Assumption 1 and Propositions 4.9 and 4.11, the points p ∈ PNLM which wit-
ness E do not witness any other edge spanning component E ′ or any triangle spanning
component T .

Thus, there is a single partition P1 of PNLM which contains all the samples p that
witness E. By Assumption 1, there is no other partition P2 of PNLM that witnesses
E. Hence, P1 is assigned label −1.
Proof 12 (Proof of Lemma 5.10). As uv is a locally maximal edge, there is a corre-
sponding edge spanning component E. Without loss of generality, assume v is the face
of some locally maximal cell σ 6= uv.

By Assumption 1 and Propositions 4.9 to 4.11, there are samples pu, pvv ∈ PNLM
such that

‖pu − u‖, ‖pv − v‖ ≤ ε.
Further, there is a spanning connected component C which pv also witnesses but

pu does not witness. Hence, there are two partitions Pv, Pu which witness E. By
assumption 1 and Algorithm 5, there are no other partitions which witness E.

Hence, both Pv and Pu are labelled with 0 by Algorithms 7 and 8.
Proof 13 (Proof of Lemma 5.11). Let T be the triangle spanning component that
corresponds to 4uvw. By Assumption 1 and propositions 4.8, 4.10 and 4.12, the sam-
ples p ∈ PNLM that witness T do not witness any spanning connected component
C 6= T . By assumption 1 and Algorithm 5 there is a unique connected component P1

that witnesses T .
As P is an ε-sample of |X|, and from Crefprop:nlmedge,prop:lmvertex, there are

samples pu, pv, pw, puv, pvw, puw ∈ P1 such that

‖pu − u‖, ‖pv − v‖, ‖pw − w‖ ≤ ε,
d(uv, puv), d(vw, pvw), d(uw, puw) ≤ ε.

Hence, P1 is assigned label 7 by Algorithms 7 and 8.
Proof 14 (Proof of Lemma 5.12). Let T be the triangle spanning component that
corresponds to 4uvw. By Assumption 1 and Propositions 4.8 to 4.10 and 4.12, any
spanning connected component C witnessed by samples p ∈ PNLM that witness T
corresponds to a locally maximal cell τ such that 4uvw ∩ τ 6= ∅.

We need to split into two cases:
1. there is a unique locally maximal cell τ ∈ X with 4uvw ∩ τ = v
2. there are at least two locally maximal cells τ, σ ∈ X, τ 6= σ with 4uvw ∩ τ =
4uvw ∩ σ = v.

Case 1: We assumed there was a unique locally maximal τ with 4uvw ∩ τ = v,
and hence, by Propositions 5.6 and 5.7 there is some spanning component Cτ which
corresponds to τ . with By Assumption 1 and Propositions 4.8 to 4.10 and 4.12, in
Algorithm 5 there is a single partition P1 of PNLM which witnesses T and Cτ , and
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there is a unique partition P2 which witnesses just T . Further, P1 is assigned label 0
and P2 label 5 by Algorithms 7 and 8.

Case 2: From our assumptions, there are two locally maximal cells τ, σ ∈ X, τ 6= σ
such that

τ ∩4uvw = v = σ ∩4uvw.
By Propositions 5.6 and 5.7 there is some spanning component Cτ which corre-

sponds to τ , and some spanning component Cσ which corresponds to σ.
By Assumption 1 and from Algorithm 5, there is a single partition P1 of PNLM

which witnesses T , Cτ , Cσ, and no partitions which witness a subset of these spanning
components. This holds, by induction, for any locally maximal cell τ ′ ∈ X, τ ′ 6= τ, σ
with τ ′∩4uvw = v. Similarly, there is a single partition P2 of PNLM which witnesses
only T . Further, P1 is assigned label 0 and P2 label 5 by Algorithms 7 and 8.
Proof 15 (Proof of Lemma 5.13). Let T be the triangle spanning component that
corresponds to 4uvw. By Assumption 1 and Propositions 4.8 to 4.10 and 4.12, any
spanning connected component C witnessed by samples p ∈ PNLM that witness T
corresponds to a locally maximal cell τ such that 4uvw ∩ τ 6= ∅.

We need to split into two cases:
1. there is a unique locally maximal cell τ ∈ X with 4uvw ∩ τ = uv
2. there are at least two locally maximal cells τ, σ ∈ X, τ 6= σ with 4uvw ∩ τ =
4uvw ∩ σ = uv.

Case 1: We assumed there was a unique locally maximal τ with 4uvw ∩ τ =
uv, and hence, by Propositions 5.6 and 5.7 there is some spanning component Cτ
which corresponds to τ . with By Assumption 1,Propositions 4.8 to 4.10 and 4.12, in
Algorithm 5 there is a single partition P1 of PNLM which witnesses T and Cτ , and
there is a unique partition P2 which witnesses just T . Further, P1 is assigned label 1
and P2 label 4 by Algorithms 7 and 8.

Case 2: From our assumptions, there are two locally maximal cells τ, σ ∈ X, τ 6= σ
such that

τ ∩4uvw = uv = σ ∩4uvw.
By Propositions 5.6 and 5.7 there is some spanning component Cτ which corre-

sponds to τ , and some spanning component Cσ which corresponds to σ.
By Assumption 1 and from Algorithm 5, there is a single partition P1 of PNLM

which witnesses T , Cτ , Cσ, and no partitions which witness a subset of these spanning
components. This holds, by induction, for any locally maximal cell τ ′ ∈ X, τ ′ 6= τ, σ
with τ ′∩4uvw = v. Similarly, there is a single partition P2 of PNLM which witnesses
only T . Further, P1 is assigned label 1 and P2 label 4 by Algorithms 7 and 8.
Proof 16 (Proof of Lemma 5.14). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemma 5.12. By
combining the arguments at the two shared vertices, there are three partitions P1, P2, P3

from Algorithm 5 which witness T , and there are spanning connected components C1, C2
such that P1 witnesses C1 but not C2, and P2 witnesses C2 but not C1. Further, P3 only
witnesses T . Hence, P1, P2 are labelled with 0 and P3 with 6.
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Proof 17 (Proof of Lemma 5.15). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are three partitions P1, P2, P3 from Algo-
rithm 5 which witness T , and there are spanning connected components C1, C2 such
that P1 witnesses C1 and C2, and P2 witnesses C2 but not C1. Further, P3 only witnesses
T . Hence, P1 is labelled with 0, P2 with 1 and P3 with 3.
Proof 18 (Proof of Lemma 5.16). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are three partitions P1, P2, P3 from Algo-
rithm 5 which witness T , and there are spanning connected components C1, C2 such
that P1 witnesses C1 but not C2, and P2 witnesses C2 but not C1. Further, P3 only
witnesses T . Hence, P1 is labelled with 0, P2 with 2 and P3 with 9.
Proof 19 (Proof of Lemma 5.17). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are three partitions P1, P2, P3, P4 from
Algorithm 5 which witness T , and there are spanning connected components C1, C2, C3
such that P1 witnesses C1 but not C2, C3, P2 witnesses C2 but not C1, C3, and P2 wit-
nesses C3 but not C1, C2. Further, P4 only witnesses T . Hence, P1, P2 and P3 are
labelled with 0 and P4 with 8.
Proof 20 (Proof of Lemma 5.18). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are three partitions

P1, P2, P3, P4

from Algorithm 5 which witness T , and there are spanning connected components
C1, C2, C3 such that P1 witnesses C1 but not C2, C3, P2 witnesses C1, C2 but not C3, and
P2 witnesses C3 but not C1, C2. Further, P4 only witnesses T . Hence, P1, P2 and P3

are labelled with 0 and P4 with 8.
Proof 21 (Proof of Lemma 5.19). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are three partitions P1, P2, P3, P4 from
Algorithm 5 which witness T , and there are spanning connected components C1, C2, C3
such that P1 witnesses C1 but not C2, C3, P2 witnesses C1, C2 but not C3, and P2 wit-
nesses C1, C3 but not C2. Further, P4 only witnesses T . Hence, P1 is labelled with 3,
P2, P3 with 0 and P4 with 4.
Proof 22 (Proof of Lemma 5.20). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are four partitions P1, P2, P3, P4 from
Algorithm 5 which witness T , and there are spanning connected components C1, C2, C3
such that P1 witnesses C1, C2, C3, P2 witnesses C1, C2 but not C3, and P3 witnesses
C1, C3 but not C2. Further, P4 only witnesses T . Hence, P1 is labelled with 0, P2, P3

with 1, and P3 with 3.
Proof 23 (Proof of Lemma 5.21). Let T be the triangle spanning component
which corresponds to 4uvw. Then, the proof is an adaption of the proof of Lem-
mas 5.12 and 5.13. By combining the arguments there are four partitions P1, P2, P3, P4

51



from Algorithm 5 which witness T , and there are spanning connected components
C1, C2, C3, C3 such that P1 witnesses C1 and not C2, C3, P2 witnesses C1 and not C2, C3,
and P3 witnesses C3 but not C1, C2. Further, P4 only witnesses T . Hence, P1, P2, P3

are labelled with 0, and P4 with 8.
Proof 24 (Proof of Lemma 5.22). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments, there are five partitions

P1, P2, P3, P4, P5

from Algorithm 5 which witness T , and there are spanning connected components
C1, C2, C3, C3, C4 such that P1 witnesses C1, C2, C4 and not C3, P2 witnesses C2 and not
C1, C3, C4, P3 witnesses C2, C3 but not C1, C4, and P4 witnesses C4 but not C1, C2, C3. Fur-
ther, P5 only witnesses T , and hence P4 only witnesses T . Hence, P1, P2 are labelled
with 0, P3 with 1, and P4, P5 with 3.
Proof 25 (Proof of Lemma 5.23). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are six partitions

P1, P2, P3, P4, P5, P6

from Algorithm 5 which witness T , and there are spanning connected components
C1, C2, C3, C4, C5 such that P1 witnesses C1, C4 and not C2, C3, C5, P2 witnesses C2, C4, C5
and not C1, C3, P3 witnesses C2, C3, C5 but not C1, C4, P4 witnesses C4 but not
C1, C2, C3, C5, and P5 witnesses C5 but not C1, C2, C3, C4. Further, P6 only witnesses T ,
and hence P1, P2, P3 are labelled with 0, P4, P5, P6 with 3.
Proof 26 (Proof of Lemma 5.24). Let T be the triangle spanning component which
corresponds to 4uvw. Then, the proof is an adaption of the proof of Lemmas 5.12
and 5.13. By combining the arguments there are six partitions

P1, P2, P3, P4, P5, P6

from Algorithm 5 which witness T , and there are spanning connected components
C1, C2, C3, C4, C5, C6 such that P1 witnesses C1, C4, C6 and not C2, C3, C5, P2 witnesses
C2, C4, C5 and not C1, C3, C6, P3 witnesses C3, C5, C6 but not C1, C2C4, P4 witnesses C4
but not C1, C2, C3, C5, C6, and P5 witnesses C5 but not C1, C2, C3, C4, C6, and P6 witnesses
C6 but not C1, C2, C3, C4, C5. Hence P1, P2, P3 are labelled with 0, P4, P5, P6 with 3.
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