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Abstract

Cell biologists study in parallel the morphology of cells with the regulation
mechanisms that modify this morphology. Such studies are complicated by the
inherent heterogeneity present in the cell population. It remains difficult to define the
morphology of a cell with parameters that can quantify this heterogeneity, leaving the
cell biologist to rely on manual inspection of cell images. We propose an alternative to
this manual inspection that is based on topological data analysis. We characterise the
shape of a cell by its contour and nucleus. We build a filtering of the edges defining
the contour using a radial distance function initiated from the nucleus. This filtering
is then used to construct a persistence diagram that serves as a signature of the cell
shape. Two cells can then be compared by computing the Wasserstein distance
between their persistence diagrams. Given a cell population, we then compute a
distance matrix that includes all pairwise distances between its members. We analyse
this distance matrix using hierarchical clustering with different linkage schemes and
define a purity score that quantifies consistency between those different schemes,
which can then be used to assess homogeneity within the cell population. We illustrate
and validate our approach to identify sub-populations in human mesenchymal stem
cell populations.

Author summary

Cells are the basic unit of life. Understanding how they grow, divide, die, and change
shape is of central importance in many other areas of the life sciences. In this paper,
we focus on the concept of shape and, more specifically, on how to compare the shapes
of two cells. We characterise this shape with the cell contour supplemented by the
position of its nuclei. We use topological data analysis to define a signature of that
shape, generated from its persistence diagram, a structure that reflects the relative
position of the nucleus with respect to segments of the contours. We compute the
distance between two cells as the Wasserstein distance between their shape signature.
Using this distance, we analyse populations of cells to help identify members with
unusual shapes (usually referred to as outliers) as well as sub-populations. We validate
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our approach to identify sub-populations within human mesenchymal stem cell
populations that are known to be heterogeneous.

1 Introduction

Cells are the basic unit of life. Understanding how they grow, divide, die, and change
shape is of central importance for immunology, cancer biology, pathology, tissue and
organ morphogenesis during development, as well as for many other areas in the life
sciences. In this paper, we focus on the concept of shape. The shape of a cell is
defined by the geometrical constraints of the space it occupies and is determined by
the external boundaries and positions of the internal components. The shape is the
result of the mechanical balance of forces exerted on the cell membrane by
intra-cellular components and the extra-cellular environment. It is a geometric
property controlled by a variety of biochemical pathways. Cell biologists study in
parallel the morphology of cells (their geometry) with the regulation mechanisms that
modify this morphology. These studies are benefiting from recent advances in
microscopy and image processing techniques. Current microscopes provide 2D images
that make it possible to study cellular shapes, or more precisely 2D projections of
cellular shapes. The question remains as to how to measure and compare those shapes.
This paper focusses on a new technique for performing those analyses.

Our proposed method for 2D shape comparisons is motivated by a seminal paper
by Engler et al. that demonstrated that the mechanical properties (Young’s elastic
modulus E) of the extracellular matrix direct the differentiation of human
mesenchymal stem cells (hMSCs) [1]. While up- and down-regulation of genes and
transcription factors takes up to several days or even weeks, experiments focused on
the first 24 hours of hMSCs after seeding on a substrate showed a significant impact of
matrix rigidity on the structural formation of acto-myosin stress fibers and quantified
that by an order parameter S that could be used as an early morphological descriptor
of mechano-directed stem cell differentiation [2]. Although this analysis was based on
the filamentous structure of the cytoskeleton and its pattern formation, we aim to use
the global cell morphology, in particular, the outline of the cellular cortex in two
dimensions. Importantly, the hMSCs used in all these studies are primary cells,
collected from the bone marrow of human individuals, and not an immortalised cell
line. This leads to an intrinsic variety of the cell population that is expected to be
further impacted by potential sub-populations of bone marrow fibroblasts (roughly
5%) [3, 4]. Our aim is to see if geometry alone allows us to identify those
sub-populations within a sample of cells collected from the bone marrow.

A 2D shape is defined as a domain D in R
2, delimited by its boundary, ∂D, often

referred to as the contour of D. In all our applications, we will take the contour to be
a piecewise smooth or polygonal Jordan curve, that is, a simple closed curve in R

2.
There are multiple geometric representations of such 2D shapes, leading to different
methods for their characterisations. We briefly review three such representations.

In the digital image representation, common to most real applications, raw data
is provided in the form of 2D images (see Figure 1A). In essence, the data to be
understood and compared is a collection of pixels. Traditional methods of comparing
such images usually proceed in three steps. They first define a set of well-chosen
landmarks or key points on the surfaces of the shapes, then assign “signatures” to
these key points (coordinates in a parameterising domain), and finally determine a
map maximising the correspondence of signatures (for a review, see [5]). With the
increase in computing power and the large number of image data sets that are
generated, these ideas are often studied in the context of deep learning, where the key
points and signatures are learnt from large data sets. Deep learning has become the
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(A) (B) (C)

Fig 1. (A) Fluorescence microscopy image of a human mesenchymal stem cell
(hMSC). (B) Fluorescence microscopy image of the corresponding nucleus. (C) Plot of
the corresponding contour of that cell with the centre of the cell shown as a dot.

predominant method used in 2D image analysis (see [6] for a review of applications to
the analysis of medical images). However, its applicability requires access to large data
sets. In many cases, limited numbers of images are available, either because they are
expensive to produce or because they model a rare phenomenon. This is the case for
the stem cell images considered in this paper. In addition, deep learning remains
something of a black-box procedure for classification. Cell biologists seek to
understand the interplay between the geometry of a cell and the biochemical processes
that are responsible for this geometry. They need a finer and more mechanistic
understanding of the processes that drive shape, requiring mathematical approaches.

A second representation of 2D shapes, which we refer to as shape as planar

contour, is based on the curve describing the outer boundary of the shape (see Figure
1C). This is well suited to applications focused on the geometric configuration of a
shape, where factors such as the colour or grey level of the interior are not relevant or
available. Methods to model the similarity between two shapes given as planar
contours have been based on defining a distance between two curves in the plane. The
proposed distances include the Hausdorff and Frechet distances [7]. Other techniques
are based on the Poisson equation [8], integral invariants [9], and an elastic shape
distance on the energy required to elastically deform one boundary contour to the
other [10, 11].

Methods based on shape as planar contour do not directly consider the interior of a
shape, possibly discarding relevant information. A third approach, shape as planar

region, compares shapes using surface correspondences that take into account both
the contour and the interior of the shape. Measures of similarity based on the
distortion energy of a 2-dimensional correspondence taking one shape to another have
been based on conformal [12–14] and quasi-conformal mappings [15–17]. These are of
particular interest when aligning landmarks, special points of interest that lie on the
boundary or in the interior of the shape. The Uniformization Theorem implies that
conformal maps can be found that align up to 3 boundary landmarks in each of a pair
of disk type shapes, or one in the interior and one on the boundary. Quasi-conformal
maps allow the alignment of any number of landmarks [15, 17], and can also be used
for shape alignment when there are holes in the interior of a shape [16]. When applied
to studying cell shapes, they make it possible to take into account the positions of the
nucleus, of actin filaments, and of reticulum endoplasmic in the interior of a cell,
which are of special interest because they are visible in microscopy images.

Paraphrasing a recent review paper by D. Chitwood and colleagues, ‘Shape is data
and data is shape’ [18]. As described above, shape is a signature of biological objects
such as cells discussed above, that are significant for their biological functions. As
such, the shape characteristics are integral parts of the data that represent these
biological objects. Reversely, there is a geometric structure within data that is referred
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as the shape of data. Analysing the shape of data has become an essential section of
data science, known as Topological Data Analysis, or in short as TDA. TDA has its
roots in the pioneering works of Robins [19], Edelsbrunner et al [20] and Zomorodian
and Carlsson [21] in persistent homology and became popular with the publication of
a landmark paper by G. Carlsson [22]. Since this paper was published, it has become
ubiquitous to data science, with many applications in biology (see, for example, the
review mentioned above, [18], and references therein illustrating applications in
structural biology, evolution, cellular architecture, and neurobiology). TDA is
particularly useful when the data are represented in the form of a graph, or network.
As such, it proceeds by connecting data points to form a geometric complex structure
whose topological behaviour is then used to analyse the data. Coming back to the fact
that the shape is data, a shape can be characterised through TDA. Using, for example,
the Euler characteristic transform to study the morphology of barley seeds [23].

In this paper, we introduce a new method for analysing the morphology of a cell
that falls into the second category described above, namely with the cell represented
with its contour with one additional point C, taken to be the center of mass of the cell
nucleus. From TDA, we use persistent homology to obtain a summary of the
morphological features of the cell contour. We use the persistence of sub-level sets of
the radial distance function from C and compute the corresponding persistence
diagram (see the next section for a primer on persistent homology applied to analysing
cell contours). As the contour of each cell is a closed, non-self-intersecting curve, we
know that it consists of a single connected component and a single 1-cycle. These two
cycles correspond to a persistent cycle with infinite life (called essential cycles) in
dimension 0 and dimension 1, respectively. Hence, we combine the information from
these two persistent cycles by pairing the birth of the essential connected component
with the birth of the essential 1-cycle. A pair of cells is then compared by computing
the 2-Wasserstein distance between their persistence diagrams, providing a measure of
similarity between the two cells. We can then apply various clustering techniques to
these similarity scores, to identify homogeneous populations of cells.

The paper is organised as follows. The next section introduces the concept of
persistence homology applied to analysing the morphology of a cell, the construction
of the persistence diagram of a cell contour, and the computation of the Wasserstein
distance between two persistence diagrams. The Materials and Methods section gives
information on the experimental data and implementations of the methods mentioned
above. The Results section discusses the applications of this new method for
identifying sub-populations among samples of human mesenchymal stem cells collected
from bone marrow which may contain some bone marrow fibroblasts [3, 4]. We
conclude with a discussion of future applications of persistence homology for
comparing cell shapes.

2 Theory: persistence homology applied to

analysing cell contours

2.1 Persistent Homology on Contours

Given a microscopy image of a fixed and immuno-stained cell, we use a graph G to
represent the boundary in 2 dimensions. This graph is a list of ordered vertices (pixel
locations), V , with edges, E, between neighbouring vertices. Note that G is connected
and every vertex has degree 2, so G consists of precisely one cycle. We extract
morphological information using the persistence of connected components of the
sub-level sets of a radial function from the centroid of the nucleus.

For a graph G, we say that two vertices v1, v2 are in the same equivalence class, or
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connected component, if there is a path γ from v1 to v2. For each connected component
of G, we choose a representative vertex v and denote the set of vertices v′ connected to
v by [v]. We call the set { [v] for v ∈ G} the connected components of G.

To use persistent homology, we need to define a filtration on G.

Definition 1 (Sub-level sets and sequence of graphs). Let f be a function from the

vertices V of a graph G to R, and fix a ∈ R. The sublevel set Ga := f−1((−∞, a]) is
the subgraph consisting of the set Va of vertices v with f(v) ≤ a and the set of edges Ea

between any pair of neighbouring vertices that are in both Va. Note that for any

a ≤ b ∈ R

we have

f−1((−∞, a]) ⊆ f−1((−∞, b]),

and the sub-level sets form a sequence of nested graphs.

Remark 1. The above definition of sub-level sets is cell-wise constant, rather than
piecewise-linear one. The distance of a point on an edge to the centre of the function
is not the standard Euclidean distance in R

2, but instead the maximum of the
distances of the two vertices. This is not an issue, as the difference in these two values
is bounded.

2.2 Persistence Diagrams

Given a nested sequence of graphs G0 ⊆ G1 ⊆ . . . ⊆ Gα (in general Gα = G the full
graph), we can track the changes in connected components of the graphs as the

filtering parameter varies. Consider some Gβ , and let Cβ :=
{

[vj ]
β
}ni

j=1
be the set of

connected components in Gβ . For each connected component of Gβ we choose a
canonical representative vertex, namely the vertex with the lowest function value. We
say that a connected component [vj ] is born at time β if there is no vertex in [vj ] it is
in Cβ−1. We say [vj ] dies at γ if in Gγ , [vj ] becomes path connected to a component
born before vj . For any pair β ≤ γ we obtain a map A

γ
β : Cβ → Cγ , which is induced

by the inclusion ιγβ : Gβ → Gγ .

Remark 2. The map A
γ
β : Cβ → Cγ is obtained from the inclusion ιγβ : Gβ → Gγ by

A
γ
β ([v]) :=

[

ιγβ(v)
]

,

which is a well-defined map.

The births and deaths of the connected components can be visualised in a
persistence diagram.

Definition 2 (Persistence Diagram). Let f be a function from a graph G to R, and

let G = {Ga}a∈R. Let C =
⋃

a∈R
Ca be the set of connected components across the

sequence of graphs G. The persistence diagram, D(G) of G is the multiset of points

(bj , dj) ∈ R
2, where bj is the birth time of [vj ] ∈ C, and dj its death time. A point with

dj =∞ is called an essential point, and the corresponding equivalence class an

essential class.

We can also define these filtrations and persistence diagrams algebraically,
including persistence modules, as in [24].
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2.3 Example

The input contour C (see Figure 2A), with the center of the nucleus marked, forms a
graph. Using the center as a reference point, we construct a radial distance function to
the graph as follows: for vertices, we use the standard Euclidean distance to the center
of the nucleus, and for edges, we take the maximum of the distances of their two
endpoints. Vertices and edges whose radial distances are below a certain threshold (or
‘time step’), form a sub-graph of C (Figure 2B). The persistence diagram (Figure 2D),
captures the changes in the connected components of the sequence or filtration of
subgraphs of C obtained at increasing time values.
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t1

t2

t3

t4

t5

(B)(A)

(C)

t1 t2 t3

t4 t5

t2t1 t3 t4 t5

t2
t1

t3
t4

t5 #2 #3

(D)

Fig 2. A) The input data: a cell contour and the center of its nucleus marked; the
latter serves as the base point for the radial distance function. B) The radial

distance function: The complete cell contour forms a graph G. The edges of this
graph are measured relative to the cell center by computing the largest Euclidean
distance between the center and the endpoints of the edge: the corresponding measure
is the radial distance function with respect to the center. Edges whose radial distance
function is below a given cutoff value (or ‘time step’), illustrated as concentric circles
around the center, define a sub-graph of the whole contour. C) Graph filtration:

Examples of subgraphs for five different time steps. The different graphs obtained at
increasing values of time form a filtration of the graph G. D) The persistence

diagram captures the topological properties of the graph filtration. The points
marked as ‘#2’ and ‘#3’ indicate that the corresponding points have multiplicity 2
and 3, respectively, in the persistence diagram.

The relationship between the sequence of subgraphs and the persistence diagram is
as follows. At t1, we see the birth of a single connected component, which has infinite
life and corresponds to the point (t1,∞) in the diagram (where ∞ is represented by
being at the top of the diagram). At t2, there are no changes (no birth or death
events). At t3, 3 connected components are born. At t4, a component born at t3
merges with another component (and hence dies), which corresponds to the point
(t3, t4). We also see the birth of 3 components. At t5, we have a single connected
component, formed by the remaining 2 components born at t3 merging with the
component born at t1, corresponding to the multiplicity 2 point (t3, t5), and all 3
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components born at t4 merge with the original component as well, corresponding to
the multiplicity 3 point (t4, t5).

As a multi-set of points, the persistence diagram is

D = {(t1,∞), (t3, t4), (t3, t5), (t3, t5), (t4, t5), (t4, t5), (t4, t5)} ,

and, since we are only considering the connected components, we call this a dimension

0 persistence diagram.
As we are using graphs to represent each contour, we can also consider the

information captured by the cycles in the subgraph filtration. Each contour is a
simple, closed curve in R

2, and hence the corresponding graph G contains a single
cycle. Furthermore, this cycle appears only in the filtration when the last vertex
appears. While it is an important descriptor of the size of the contour, it is inefficient
to capture this information in a dimension 1 persistence diagram. Hence, we modify
our dimension 0 diagram as follows, so that we capture this information: we pair the
birth of the essential class in dimension 0 with the birth of the essential class in
dimension 1. In this case, the set of points in the persistence diagram becomes

D = {(t1, t5), (t3, t4), (t3, t5), (t3, t5), (t4, t5), (t4, t5), (t4, t5)} .

Remark 3. Readers familiar with persistent homology and persistence diagrams will
notice that this is a nonstandard modification. Due to the nature of the contours,
performing this essential pairing allows us to more efficiently represent and compare
the topological descriptors.

2.4 Comparing two persistence diagrams using the

Wasserstein distance

A persistence diagram provides a summary of the changes in the connected
components as we progress along the sequence of graphs. Let us consider two
sequences of graphs

G
1 = G1

0 → G1
1 → . . . G1

α1

and

G
2 = G2

0 → G2
1 → . . . G2

α2
,

corresponding to two cell contours, with their associated persistence diagrams
D1 = D(G1), D2 = D(G2). We define the distance between the cell contours as the
distance between D1 and D2, where the distance is the Wasserstein distance, defined
below.

Imagine that there are N farms that serve N markets, and assume balance, that is,
that each farm produces enough fruits and vegetables as needed by one market. A
company in charge of the distribution of the produce from the farms to the market
will take into account the individual cost of transport from any farm to any market to
find an ‘optimal transportation plan’, namely an assignment of farms to markets that
leads to a minimal total cost for the transport. The seemingly simple problem can be
traced back to the work of Monge in the 1780s [25]. What makes it so interesting is
that its solution includes two essential components. First, it defines the assignment
between farms and markets, enabling the registration between those two sets. Second,
and more relevant to us, it defines a distance between the set of farms and the set of
markets, with such distance being referred to as the Monge distance, the Wasserstein
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distance, or the earth mover’s distance, depending on the field of applications.
Formally, if F is the set of farms and M the set of markets, and if we define C(i, j) the
cost of transport between farm i and market j, the assignment problem refers to
finding a bijection f between F and M that minimises

U =
∑

i∈F

C(i, f(i)). (1)

Note, f can be seen as a permutation of {1, . . . , N}. As mentioned above, the optimal
Umin is a distance between F and M . This is the distance we use to compare two cell
contours based on their persistence diagram.

As described above, a persistence diagram is defined by a set of points. Let S1

(resp. S2) be the set of points associated with D1 (resp. D2):

S1 = {X1, . . . , XN}

S2 = {Y1, . . . , YN}

Note that we assume first that the two sets have the same number of points. We
define the cost matrix C be to a power of the Euclidean distance, i.e.,

C(xi, yj) = ||xi − yj ||
p

The p-Wasserstein distance between S1 and S2 is then:

Wp(S1, S2) =

(

min
f

∑

xi∈S1

||xi − f(xi)||
p

)1/p

The formalism defined above assumes that the two sets of points S1 and S2

considered have the same size, that is, there are as many points in D1 as there are
points in D2. There is no reason that this is the case. In the more general case, S1

contains N1 points and S2 contains N2, with N1 > N2, without loss of generality. This
problem, however, can easily be reduced to the balanced case presented above by
adding N1 −N2 pseudo, or ‘ghost’ points in S2 that the two corresponding sets have
the same cardinality. The distance between a point is S1 and one of these
pseudo-points can be chosen arbitrarily. One option is to position the ”ghost” points
on the diagonal of D2.

In the following, we will use the 2-Wasserstein distance to compare two cell
contours via their persistence diagrams.

3 Materials and Methods

3.1 Human Mesenchymal Stem Cells

Adult human mesenchymal stem cells (hMSCs) were purchased from Lonza (catalogue
#PT − 2501) and cultured in low glucose DMEM (Gibco, #1885− 023) supplemented
with 10% FBS (Sigma-Aldrich, Ref. F7524), and 1% penicillin/streptomycin (Gibco,
#15140122) in regular tissue culture treated flasks (greiner Bio-One, 75cm2, #658175)
at 37◦ C and 5.0% CO2. Cells were kept subconfluent at low density all the time and
passaged and split every two or three days using trypsin incubation of 3 min for
detachment after a washing step with PBS (Gibco, #14190144). Cells were seeded on
ibidi µ-Dishes (35 mm, high, ibiTreat, Cat.No: #81156) at a density of 500 cells cm−1

to maintain a sufficient number of isolated cells for observation and grown for 24 hours
under identical culture conditions. The cells were then washed once with PBS and
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chemically fixed for 5min in a 10% solution of formaldehydce (Sigma-Aldrich, 252549)
in PBS. Next, cells were permeabilized with TritonX (Sigma-Aldrich, T 9284) and
extensively washed with PBS. Filamentous actin was stained using fluorescent
Phalloidin-Atto 550 (ATTO-TEC GmbH, AD 550− 81) and the nucleus was visualised
using a DNA-intercalating dye (Invitrogen, Hoechst #33342).

3.2 Unbiased Microscopy

The fixed cells were imaged on an inverted fluorescence microscope (Zeiss
AxioObserver, Oberkochen, Germany) using a 20x objective (Zeiss, Plan-Neofluar,
440340-9904) and recorded by a sCMOS camera (Andor Zyla, 4.2P USB3.0) using two
filter sets (blue (Zeiss Filterset 49) and red (AHF, F46-008)) for the stained nucleus
and actin, respectively. For unbiased data acquisition, the samples were inspected
using the nucleus channel first and selecting cells that were isolated (no other nucleus
in the field of view) and had a healthy-looking nondeformed nucleus. Multiple nuclei,
oddly shaped nuclei as well as any oddly shaped nuclei were excluded to avoid
recording cell outlines from abnormal cells. Subsequently, the actin channel of the cell
was recorded to complete the data set for each cell. In this way, three individual data
sets were recorded from three individual ibidi µ-Dishes.

3.3 Image Processing and Contour Generation

We used the FilamentSensor2.0 tool [26] to perform the image processing and extract
the contour of each cell. Here, we used the features ‘Include Area-Outline’ to export
the contour from the binarized image of the cells. The center of the cell is obtained
from the center of mass from the aligned microscopy image of the nucleus. Here, we
thresholded the nucleus in Fiji [27] using the ‘Otsu’ method, before outlining it and
determining the x- and y-coordinates of the centre of mass.

3.4 Contour Analysis: computing the distance between 2 cells

After extracting the contour from each image and identifying the centre of the nucleus,
we convert it to the graph representation G. Recall that every vertex in G is of degree
2, and G contains a single cycle. Let V = {vi}

n
i=1 be the set of vertices of G, ordered

clockwise around the contour. Then every edge e of G is of the form (vi, vi+1), where
vn+1 = v1. Before we obtain our sequence of graphs G, We clean our graph
representation G of C by replacing any set of consecutive edges
{(vi, vi+1), . . . , (vj−1, vj)} which are colinear with the edge (vi, vj) and removing the
vertices vk for i < k < j.

Remark 4. Consider a contour C, and let G be the original graph representation and
G′ the graph after it has been cleaned. As the metrics on the edges of G,G′ are
defined as the maximum of the values on the 2 vertices, the sequences of graphs G and
G′ generated by these metrics on G and G′ respectively will have different topological
features. In particular, connected components may be born later, by the removal of
vertices that are closer to the base point of the radial distance function. These changes
in values are bounded, and hence, by the stability of persistence diagrams [28], the
distance between the respective persistence diagrams is also bounded. Although it is
possible to generate contours where this cleaning process leads to large bounds on the
distance between the persistence diagrams, the geometric features that lead to this are
not of concern in our application. Hence, we prioritise computational efficiency and
proceed with the cleaned graphs.
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Working with the cleaned graph GX for each cell X , we filter GX (see Definition 1
and Section 2.3), and obtain a persistence diagram DX (Definition 2). Then we
construct a distance matrix M , using the 2-Wasserstein distance between the
persistence diagrams DX , DY as the distance between two cells X,Y .

3.5 Clustering cells based on their contour

Clustering is the task of regrouping cells such that those that belong to the same group,
referred to as a cluster, are more similar to each other than to those in other clusters.
The similarity between two cells is set to be the 2-Wasserstein distance between the
persistence diagrams of their contours (see above). The clustering of the cells is then
performed using the agglomerative hierarchical clustering analysis, or HCA. The is a
bottom-up approach in which each cells starts in its own cluster, and pairs of clusters
are merged iteratively until all cells belong to the same cluster. The whole procedure
defines a clustering tree. While the distance between two cells is clearly defined above,
a key element is to define the distance between two clusters. When two clusters A and
B are sets of elements, the distance between A and B is then defined as a function of
the pairwise distances between their elements. Four common choices of linkage are:

• Average linkage: the distance between two clusters is the arithmetic mean of
all the distances between the objects of one and the objects of the other:

d(A,B) =
∑

a∈A

∑

b∈B

d(a, b)

|A||B|

where | · | stands for cardinality. Average linkage, also called UPGMA, is the
default linkage for most HCA implementations.

• Single linkage: the distance between two clusters is the smallest distance
between the objects in one and the objects in the other.

d(A,B) = min{d(a, b), a ∈ A, b ∈ B}

• Complete linkage:the distance between two clusters is the largest distance
between the objects in one and the objects in the other.

d(A,B) = max{d(a, b), a ∈ A, b ∈ B}

• Ward’s linkage accounts for the variances of the clusters to be compared. For
a cluster A, the variance SSE(A) is defined as:

SSE(A) =
∑

a∈A

d(a,m(A))2

where d is the underlying distance used to compare two objects and m(A) is
either the centroid (if it can be computed) or medioid of the cluster (the medioid
is the point in A that has the least total distance to the other points in A). The
Ward distance between two clusters A and B is then:

d(A,B) = SSE(A
⋃

B)− (SSE(A) + SSE(B))

The choice of the linkage can have a significant influence in the clustering found by
HCA: for example, simple linkage only looks locally at cluster distance and as such
may lead to elongated clusters, while reversely complete linkage will have a tendency
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to generate more compact clusters. There is no consensus as to which linkage to use
for a specific data set; this is, in fact, an active area of research.

To avoid possible biases associated with the choice of linkage, we will use all four
options in our analyses, performing HCA with [29]. However, this requires a way to
compare the results of one option with the others. We chose our own concept of purity
to perform such a comparison, defined as follows. Let C1 be one cluster identified with
HCA with a linkage method L1. It is possible that C1 may not be identified as its own
cluster within the tree T2 generated with another linkage method L2. To assess how
well T2 recognises C1, we follow the following algorithm:

1) We choose first a seed, S1, i.e. an object that belongs to C1. We initialise a list
of obects O = {S1}.

2) We identify the leaf of T2 corresponding to S1, and add to the list O the object
that has the same parent P1 in T2 as S1.

3) We find the parent P2 of P1 and add to O all objects that are in the sub tree of
T2 starting from P2. Wet set P1 ← P2.

4) We repeat step 3 until O contains all objects in C1

If the results with the linkage L2 map exactly to the results with the linkage L1, O
will be equal to C1. However, in general, O will be bigger because it will include
objects that are found by L2 to be similar to objects in C1 that were not identified by
L1. The purity P (C1/L2) of C1 with respect to L2 is then defined as:

P (C1/L2) =
N − |O|

N − |C1|
(2)

where | · | stands for cardinality and N is the total number of objects. Note that P is
between 0 and 1. The closer P is to one, the more consistent the two linkage strategies
L1 and L2 are with respect to C1.

4 Results and discussion

With the advent of imaging techniques associated with advanced microscopes, cell
biology has become quantitative. It is now common to study even large populations of
cells by analysing their morphological features captured in an image. For example,
those morphological features may be measured from two populations of the same cell
types, with one population treated with chemical or physical constraints, while the
other is not treated and serves as a control population. The effects of the treatment
are then quantified by measuring changes in the features in the two populations (see,
for example, [30–33]). Identifying which morphological feature is relevant and
measuring those features in the images are fields of study by themselves (see [33] for a
review). However, there are two other main difficulties that cannot be ignored in such
studies. First, as with any experimental techniques, there are possible artefacts
coming from the sample itself (dead cells, cells undergoing apoptosis, dividing cells,
etc.), the cell-fixing process and subsequent staining, or even the imaging and/or
image processing steps of the analysis. Detecting cells that were affected by such
artefacts, usually referred to as outlier cells, is a time-consuming process if performed
manually, especially with large populations of cells, and might sometimes be
subjectively influenced by the human experts. Second, the population of cells itself
may be heterogeneous (e.g. primary cells collected from a patient), leading to
sub-populations. In this section, we report how our method for comparing the shapes
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of hMSC cells using persistence homology applied to the cell contours can help identify
both unusual cell shapes as well as possible sub-populations. hMSC cells are known to
exist as heterogeneous populations (see, for example, [34]).

We analysed one set of hMSCs, X1, with the experimental setup and analysis
pipeline described in Section 3. The whole procedure and results are discussed in
Section 4.1.

4.1 X1

The set X1 consists of 136 cells. These cells have already been selected based on
manual inspection, as described in Section 3.2. To further analyse the homogeneity of
this set of cells, we computed all pairwise distances between the cell contours using the
persistence homology technique described above. The corresponding distance matrix is
visualised as a heat map in Figure 3. The column/row of mostly bright yellow suggests
that there is one cell that differs significantly from the others. This cell is shown
Figure 4. Clearly, this cell is oddly shaped: it is long and thin, with three long filipods,
significantly different from the expected shape of a hMSC (see Figure 1 and Figure 7).
Such a shape is usually considered an outlier.

Fig 3. Heat map of the distance matrix for X1. There is a cell that has distinctly
higher than average distances to the other cells, indicated by the row/column of
mostly bright yellow. Generated with [35].

Fig 4. Image of the unusual cell shape (X1-031) identified in Figure 3 (image
processed using [36].)

We perform clustering of cell contours in X1 using the Wasserstein distance
between their associated persistence diagram, in the presence Figure 5, and in the
absence Figure 6) of the ‘outlier’ X1-031 identified above. We used HCA, with four
different linkages: average, complete, single, and Ward.
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(B) Complete linkage dendrogram

(C) Single linkage dendrogram (D) Ward linkage dendrogram

(A) Average linkage dendrogram

Fig 5. Dendrograms for X1, the colours correspond to 4 clusters obtained using
average linkage. (A) Average linkage. (B) Complete linkage. (C) Single linkage. (D)
Ward linkage. In each of these, there is an outlier, with the corresponding leaf
coloured purple. Generated with [37, 38].

As expected, cell X1-031 is identified as its own cluster with all four linkages in
Figure 5. This cell has a unique shape that differentiates it from other hMSC cells.
Although there are many possible reasons for this behaviour, X1-031 is considered an
outlier.
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(B) Complete linkage dendrogram

(C) Single linkage dendrogram (D) Ward linkage dendrogram

(A) Average linkage dendrogram

Fig 6. Dendrograms for X1 main, the colours correspond to 4 clusters obtained using
average linkage. (A) Average linkage. (B) Complete linkage. (C) Single linkage. (D)
Ward linkage. In each of these, there is a consistent sub-population, coloured purple.
Generated using [37, 38].

The clustering of the set X1 with this outlier removed identifies subgroups among
X1. However, those subgroups seem to differ under different choices of the linkage for
HCA (Figure 6). This behaviour is not unexpected, as different linkage schemes
capture different geometries for the cluster (see Section 3.5). It is common to focus on
only one linkage scheme, usually the average linkage, and ignore the others. Our
approach is different. We use all four linkages and assess their consistency, as
illustrated in Figure 6. We start with the average linkage scheme and cut the
associated dendrogram to get four clusters. These four clusters are referenced as A (in
red), with (n = 86) elements, B (in blue) with (n = 7) elements, C (in green,
(n = 22)), and D (in purple, (n = 24)). We then consistently colour the dendrograms
for all linkage schemes based on those clusters A, B, C, and D. As expected, there are
differences. However, some consistencies are observed. For example, we note that
cluster D (in purple) is grouped together across all 4 linkage schemes. To confirm this
visual consistency, we computed a purity score (see Section 3.5) of the clusters
obtained with the average linkage in all four linkage schemes. The purity score
quantifies how ‘pure’ a group of objects is within a dendrogram. It is computed by
first identifying the subtree within the dendrogram that contains all objects within
that group. If this subtree only contains this group, it is deemed pure and the purity
score is set to 1. If instead this subtree contains other objects, its purity is reduced.
When the subtree is the whole tree, the purity score is reduced to 0. The purity scores
of clusters A to D are reported in Table 1, while examples of cells for each clusters are
shown in Figure 7.
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Cluster
Linkage A (red, n = 86) B (blue, n = 7) C (green, n = 22) D (purple, n = 24)
average 1.0 1.0 1.0 1.0
complete 0.0 1.0 0.732 1.0
single 0.021 0.0 0.056 1.0
ward 0.0 1.0 0.690 1.0

Table 1. Purity score of the 4 clusters obtained with the average linkage for X1 main,
see Figure 6. The colour and size of each cluster is in parentheses.

As mentioned above, cluster D (purple) is visually homogeneous within all four
linkage schemes: this is confirmed as its purity scores remain equal to 1. Cells in this
cluster have compact shapes and a prominent nucleus, as expected from cells that
have been plated on glass. The same types of cells was distinguished as a
sub-population FC by Haaster et al. [34]. In contrast, cluster A (red) is much less
consistent within the different linkage schemes, with purity scores close to 0 (with the
obvious exception of the average linkage). Visually, cells belonging to cluster A are
more heterogeneous, with a star-shaped or a triangular shape (first row of Figure 7).
This group of cells maps with the sub-population RS identified by Haaster et al.. Cells
belonging to cluster B are significantly more elongated. Their purity score is high with
the exception of the single linkage scheme but this could just be anecdotic as there are
only 7 cells in this cluster. They may correspond to elongated, fibroblastic-like,
spindle-shaped cells, identified as SS cells by Haaster et al.. Cells in cluster C are
mostly compact, similar to those in cluster D, but usually bigger. The purity scores of
cluster C are close to 1, indicating that they form a group with homogeneous shapes.
They were likely identified as belonging to the sub-population FC by Haaster et al..
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A 

(red)

B 

(blue)

C 

(green)

D 

(purple)

Fig 7. Example cells from each cluster of the set X1 (after removal of the outlier, see
text for details). Those clusters are identified with HCA and average linkage scheme
(see Figure 6). All cell images are shown at the same magnification level. Images were
processed using [36].

5 Conclusion

Cell biologists commonly study in parallel the morphology of cells with the regulation
mechanisms that affect this morphology. In the case of stem cells for example, the
shapes they assumed when plated on substrate with different rigidity are expected to
define morphological descriptors of mechano-directed differentiation. The
heterogeneous nature of cell population is, however, a major difficulty when studying
cell shape based on images from images from digital microscopes. It is common to
manually assess first all the images associated with a population of cells under study
in order to identify “outliers”, i.e. cells with unusual shapes that raise questions on
their nature (i.e. these cells could be associated with contamination) or on the
presence of experimental artefacts. The aim of the present study was to propose an
alternative, automated method to help with this manual assessment. We have
developed a new method for analysing cell shapes that is based on three elements:
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• A description of cell shapes using persistence homology . The shape of a
cell is defined from its contour and the position of its nucleus. We compute a
filtration of the edges defining the contour, using the radial distance to the
nucleus as a filter. This filtration is used to define a persistence diagram that
serves as a signature of the cell contour.

• A distance between two cells. This distance is the Wasserstein distance
between the persistence diagrams of their contours.

• A measure of homogeneity of cell subgroups. We perform hierarchical
clustering on cell shapes using the distance defined above, with four different
linkage schemes. We define a purity score for subgroups of cells within the
dendrograms associated with those clustering. This purity score reflects
homogeneity.

We have tested our method on hMSC cells that are known to be heterogeneous. We
have shown that it automatically identifies unusual cells that can then be deemed
outlier or not, as well as sub-populations that are consistent with previous analyses of
sub-populations of hMSCs [34].

There are many morphometric parameters that could have been included to
complement our topological data analysis, such as cell area, aspect ratios, ellipticity,
curvature of the contours, ... It is our intent to complement our analyses with a more
comprehensive set of morphological signatures of cell shapes. In addition, all those
parameters, including the persistence diagrams presented in this paper, are computed
based on 2D images. Cells are 3D objects and ultimately should be studied as such.
The concepts we have introduced in this paper extend to the analyses of 3D surfaces.
We will explore this in further studies.
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