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Abstract. In this paper, we consider the simplest class of stratified spaces –

linearly embedded graphs. We present an algorithm that learns the abstract
structure of an embedded graph and models the specific embedding from a

point cloud sampled from it. We use tools and inspiration from computa-
tional geometry, algebraic topology, and topological data analysis and prove

the correctness of the identified abstract structure under assumptions on the

embedding. The algorithm is implemented in the Julia package Skyler, which
we used for the numerical simulations in this paper.

1. Introduction. Increases in the quantity and complexity of collectable data have
lead to the search for new methods for efficiently discovering and modelling their un-
derlying structures. The importance of dimensionality reduction of large amounts
of data grows with the embedding dimension. By expanding the class of under-
lying structures which can be detected and modelled, we aim to address some of
the difficulties. To improve dimensionality reduction’s efficiency and accuracy, we
remove the manifold assumption where the dimension is constant and instead treat
it as a stratified space, learning the local dimension in the algorithm. We focus on
one-dimensional stratified spaces (i.e. graphs) and here provide a new method for
dimensionality reduction and compression.

Manifold learning is a method of detecting and modelling structures underlying
data sets. There are numerous algorithms and theorems for learning geometric and
topological features of manifolds from (noisy) samples, such as dimension or the
manifold itself (see [6], [8], [9]). These algorithms make assumptions about the
manifold and the sampling procedure, often in the form of curvature restrictions
and conditions on the sample’s density and noise. Unfortunately, these assumptions
are not satisfied by point clouds arising in many applications, such as geospatial
transportation network data of vehicle movement. We move towards resolving this
problem by expanding the set of allowable underlying structures to include stratified
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spaces. A stratified space is a space described by gluing together (manifold) pieces,
called strata. There are no restrictions placed upon each stratum’s dimension, and
the gluing can give rise to a variety of interesting and complex local structures.

Bendich et al. ([3], [2]) describe an algorithm which, under certain conditions,
can identify if two points have been sampled from the same stratum of a stratified
space. This algorithm does not provide a method for learning the global abstract
structure. In related work, Nanda et al. ([11]) present an algorithm for detecting
when points have been sampled from two intersecting manifolds, which is a cruder
splitting than the splitting into stratified subspaces. They have some experimental
verification but no theoretical guarantees.

The closest previous work to this paper is [1], in which Aanjaneya et al. consider
reconstructing metric graphs to detect branch points and the graph structure. There
are a few crucial differences. They focus in on the reconstruction of the metric,
with input intrinsic distances on the metric graph (plus noise), and they aim to
reconstruct a metric graph that is homeomorphic and close as metrics. This means
that the theoretical guarantees are about the lengths of edges in the metric graph
instead of geometric conditions on an embedding. Crucially, they do not need to
consider vertices of degree 2 as in a metric space setting, these are points on an
edge.

In contrast, this paper describes an algorithm for modelling a linear embedding
of a simple graph from a point cloud sample and provide theoretical guarantees in
terms of the geometric embedding that the graph structure modelled is equivalent
to the structure embedded.

Definition 1.1 (Graph). A graph G consists of

1. A set of vertices V = {vi}nv
i=1,

2. A set of edges E = {(vj1 , vj2)}ne
j=1.

For any graph G, the boundary operator ∂G : E → V × V , maps an edge to the
two boundary vertices. We can represent ∂G via the boundary matrix B, which is
the nv×ne matrix with B[i, j] = 1 if vi = vj1 or vi = vj2 . Edges (vj1 , vj2) are open,
and their boundary consists of the two vertices.

Given a graph G, we can embed it into Rn in numerous ways. We will restrict to
linear embeddings, such that at degree 2 vertices, the angle between edges is not π.

Definition 1.2 (Linear embedding). A linearly embedded graph

|G| = (G,φG) ⊂ Rn

is a graph G, and a map φG : G→ Rn, such that

1. On the vertex set V , φG is injective, and we denote φG(v) by v,
2. On E, φG is defined by linear interpolation: the embedding of an edge (u, v)

is the line segment joining φG(u) and φG(v), denoted φG(u)φG(v) = uv,
3. Embedded edges uv, u′v′ only intersect if they share a boundary vertex, say
v′ = v, and their intersection is φG(v).

We restrict our attention to embedded graphs |G| such that at a degree two vertex
v, the embedded edges, say uv, wv form an angle α 6= π.

Please note that with an abuse of notation we will usually use v to denote both
the abstract vertex and the embedded location φG(v), and use uv to denote both
the abstract edge and the embedded image of that edge by φG. It should always be
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clear from context whether we are referring to an element in the abstract structure
or to its image in Rn.

Throughout this paper, we use the following conventions. For two points x, y ∈
Rn, ‖x − y‖ is the distance between x and y in the standard Euclidean metric on
Rn, 〈x, y〉 is the inner product of x and y. For a point x ∈ Rn and a set Y ⊂ Rn,
we set

d(x, Y ) := inf
y∈Y
‖x− y‖,

and for two sets X,Y ⊂ Rn,

d(X,Y ) := inf
x∈X,y∈Y

‖x− y‖.

Given a point x ∈ |G|, we can determine if x is on an edge, or is a vertex by
considering the intersection of |G| with a small ball around x. Consider Br(x) for
small r > 0. If x is a vertex, r is less than ‖x − w‖ for all vertices w 6= x and
there are no edges uw within r of x, then Br(x) ∩ |G| is connected, and for each
edge containing x, there is a unique point in ∂Br(x). If x is a degree 2 vertex, let
the two points on ∂Br(x) be p and q, then ∠pxq < π. Now consider x ∈ uv for
some embedded edge uv, and take r < min {‖x− v‖, ‖x− u‖}. If there is some edge
wz with d(x,wz) ≤ r, then Br(x) ∩ |G| is disconnected. Otherwise, Br(x) ∩ |G| is
connected, and there are two points q, p in ∂Br(x)∩ |G|, and ∠pxw = π. This is an
adaption of the local homology of |G| at x.

We suppose that we do not have the entire embedded graph |G|, but only a finite
sample P . Furthermore, we expect noise so that P 6⊆ |G|, and we can only make
statements about the distance between P and |G|. We restrict to sufficiently dense
samples P of |G| with bounded noise. Let dH(X,Y ) be the Hausdorff distance
between two subsets X,Y of Rn. We consider ε-samples of embedded graphs |G|.

Definition 1.3 (ε-sample). Let |G| ⊂ Rn be an embedded graph. An ε-sample P
of |G| is a finite subset of Rn such that dH(|G|, P ) ≤ ε.

We can now state the aim of this paper: given an ε-sample P of a linearly
embedded graph |G|, we want to 1) detect the graph structure G, and then 2)
model φG. This is a semi-parametric problem: the parameters we need to learn are
the number of vertices, the number of edges, and the boundary operator. To do so,
we need to decide if p is near a vertex v or far away from all vertices for each p ∈ P .
This partitions our sample P into two subsets, which intuitively are P0 containing
samples p which are near a vertex, and P1 containing samples p which are not near
any vertex. We define P0 and P1 rigorously in Definition 3.5. In the process of
partitioning P , we approximate the local homology at each p ∈ P using radius r.
This requires choosing a scale for approximating |G| from P . The clusters in P0 and
P1 correspond to vertices and edges in G respectively, and we can use the minimal
distance between clusters in P1 and P0 to learn the boundary operator. Using this
information, we model the embedding φG.

A necessary but not sufficient condition for a point p to be near a vertex is
Br(p) ∩ |G| being connected. If it is disconnected, p is not near any vertex, and
if it is, we need to check the number of connected components in Br(p) ∩ |G| to
determine if p is near a vertex or not. As p is within ε of |G|, r must be greater
than ε to ensure Br(p) ∩ |G| is non-empty.
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Fix R > ε. We first want to approximate BR(x)∩|G|, and then ∂BR(x)∩|G| from
P . We can approximate BR(p)∩|G| by considering samples q ∈ P with ‖p−q‖ ≤ R.
As P is an ε-sample of |G|, we can approximate ∂BR(p) ∩ |G| by considering the

samples in a spherical shell SR+ε
R−ε(p) of inner radius R−ε, outer radius R+ε around

p.
We model φG by aiming to reconstruct a probability measure ν which is sup-

ported on |G| ⊂ Rn. As recorded data has errors, we cannot directly reconstruct
ν, but instead construct an approximating measure νδ such that νδ is equivalent to
the Lebesgue measure, and supp(limδ→0νδ) = |G|. We form νδ from a categorical
mixture model of measures over the individual strata pieces, with latent variables
for strata assignment. We use a Gaussian convolution for each individual strata
piece to form our approximation of ν with νδ. We derive a log-likelihood function
which is maximised through an Expectation-Maximisation algorithm (Algorithm
3).

In Section 2, we present and prove some geometric lemmas used throughout
Sections 3 and 4, then in Section 3 we define (R, ε)-local structure, describe the
(R, ε)-local structure of a vertex and of an edge, before providing conditions under
which we can guarantee what (R, ε)-local structure a sample p has. Section 4
presents the algorithm, relates it to the (R, ε)-local structure, before proving that
the abstract graph identified is equivalent to the original one. Finally, Section 5
describes the modelling process used and contains some simulations.

2. Some geometric lemmas. As motivation for the formulas both in the def-
initions of local structure and the geometric assumptions of the graphs’ embed-
ding, we first prove some geometric lemmas. Throughout our process, we consider
〈x1− p, x2− p〉 for p, x1, x2 samples, and ‖p−x1‖, ‖p−x2‖ ∈ [R− ε,R+ ε]. In par-
ticular, if there are two clusters of points in the spherical shell around a sample p,
all points (including p) are within ε of an edge uv, and x1 and x2 are from different
clusters, we wish to bound 〈x1 − p, x2 − p〉 from above.

Lemma 2.1. Fix R > 12ε > 0 and consider a sample p within ε of an edge uv.
Let H be the hyper-plane through p perpendicular to uv. Now take x1, x2 within ε
of edge uv such that ‖p− x1‖, ‖p− x2‖ ∈ [R− ε,R+ ε] and x1, x2 are on different
sides of H. Then

〈x1 − p, x2 − p〉 ≤ −R2 + 2Rε+ 7ε2.

Proof. By assumption ‖x1 − p‖, ‖x2 − p‖ ≥ R − ε. As x1, p, x2 are all within ε of
uv we know that ∠(x1px2) ∈ [π − 2 arccos( 2ε

R−ε ), π]. Together we can bound

〈x1 − p, x2 − p〉 = ‖x1 − p‖‖x2 − p‖ cos∠(x1px2)

≤ (R− ε)2 cos

(
π − 2 arccos

(
2ε

R− ε

))
≤ (R− ε)2

(
2

(2ε)2

(R− ε)2
− 1

)
≤ −R2 + 2Rε+ 7ε2.
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We want to distinguish points very close to a vertex of degree 2 as close to a
vertex, from points on an edge. This requires an upper bound on the angle at any
vertex of degree 2 within our geometric assumptions due to the noise in sampling.
The following geometric lemma motivates the upper bound given in the next section.

Lemma 2.2. Fix R ≥ 12ε > 0. Take u, v, w ∈ Rn, and consider the line segments
uv,wv.

Let p, x1, x2 ∈ Rn be such that p and x1 are within ε of vw, x2 is within ε of uv,
and ‖x1 − p‖, ‖x2 − p‖ ∈ [R− ε,R+ ε].

If either

1. ‖p− v‖ < 4ε and

π/2 < ∠uvw < π − arctan

(
R+ 3ε

6ε

)
+ arcsin

(
R2 − 4Rε− 9ε2

(R+ ε)
√
R2 + 6Rε+ 34ε2

)
,

OR

2. ‖p− v‖ < (R− ε)/2 and ∠uvw ≤ π/2
then

〈x1 − p, x2 − p〉 > −R2 + 2Rε+ 7ε2.

Proof. Let p̃, x̃1, x̃2 be the projections of p, x1, x2 to uv ∪ wv. Without loss of
generality, we assume p̃, x̃1 ∈ wv ∪ v, and x̃2 ∈ uv. Then there are ep, e1, e2 ∈ Rn
with ‖eq‖, ‖e1‖, ‖e2‖ ≤ ε and

p = p̃+ ep

x1 = x̃1 + e1

x2 = x̃2 + e2.

Now consider the vectors x1 − p and x2 − p, we have:

〈x1− p, x2− p〉 = 〈x̃1− p̃, x̃2− p̃〉+ 〈x̃1− p̃, e2〉− 〈x̃1− p̃, ep〉+ 〈e1− ep, x2− p〉 (1)

We know that ep is perpendicular to vw and thus it is also perpendicular to x̃1−p̃
implying 〈x̃1 − p̃, ep〉 = 0. Further, we know that ‖x̃1 − p̃‖ ≤ ‖x1 − p‖ ≤ R + ε as
distances can only decrease when projecting onto vw. Hence, to bound 〈x̃1 − p̃, e2〉
we first split e2 = e′2+e′′2 where e′2 is the projection of e2 into the plane spanned by vu
and vw. Note that e′′2 is perpendicular to x̃1− p̃ and hence 〈x̃1− p̃, e2〉 = 〈x̃1− p̃, e′2〉.
From here, we need to split the proof into the two scenarios.

Assume we are in scenario 1: ‖p− v‖ < 4ε and

π/2 < ∠uvw < π − arctan

(
R+ 3ε

6ε

)
+ arcsin

(
R2 − 4Rε− 9ε2

(R+ ε)
√
R2 + 6Rε+ 34ε2

)
.

The angle between e′2 and x̃1 − p̃ is either ∠uvw + π/2 or ∠uvw − π/2. Recall
that we assumed ∠uvw ∈ (π/2, π), so cos(∠uvw−π/2) > 0 > cos(∠uvw+π/2) and

〈x̃1−p̃, e2〉 = 〈x̃1−p̃, e′2〉 ≥ ‖x̃1−p̃‖‖e′2‖ cos(∠uvw+π/2) ≥ −ε(R+ε) sin∠uvw. (2)

Combining (1) and (2) we see

〈x1 − p, x2 − p〉 ≥ 〈x̃1 − p̃, x̃2 − p̃〉 − sin∠uvw(R+ ε)ε− (R+ ε)2ε. (3)



542 YOSSI BOKOR, KATHARINE TURNER AND CHRISTOPHER WILLIAMS

w

u

v

p

x2

x1

x̃2

x̃1

p̃

Figure 2.1. An example of scenario 1.

To bound 〈x̃1− p̃, x̃2− p̃〉 we use that ∠x̃1p̃x̃2 = ∠uvw+∠vx̃2p̃, that the sine rule
says ‖x̃2− p̃‖ sin(∠x̃2vp̃) = ‖v− p̃‖ sin∠uvw, and that cos∠vx̃2p̃ > 0, cos∠uvw < 0
and − sin2 ∠uvw ≤ − sin∠uvw. Together these imply that

〈x̃1 − p̃, x̃2 − p̃〉 = ‖x̃1 − p̃‖‖x̃2 − p̃‖ cos(∠uvw + ∠vx̃2p̃)

= ‖x̃1 − p̃‖‖x̃2 − p̃‖ cos∠uvw cos(∠vx̃2p̃)

− sin2 ∠uvw‖v − p̃‖‖x̃1 − p̃‖
≥ (R+ ε)(R+ 3ε) cos∠uvw − sin∠uvw‖v − p̃‖(R+ ε).

From the assumptions in this scenario that ‖v − p̃‖ ≤ 4ε, we can substitute into
(3) to get

〈x1 − p, x2 − p〉
≥ (R+ ε)(R+ 3ε) cos∠uvw − 4ε(R+ ε) sin∠uvw −Rε(2 + sin∠uvw)

− (2 + sin∠uvw)ε2

= (R+ ε)
√
R2 + 6Rε+ 34ε2 sin

(
∠uvw + arctan

(
R+ 3ε

5ε

))
− 2εR− 2ε2.

From our assumptions in ∠uvw

sin

(
∠uvw + arctan

(
R+ 3ε

5ε

))
> − R2 − 4Rε+ ε2

(R+ ε)
√
R2 + 6Rε+ 34ε2

.

Thus we conclude

〈x1 − p, x2 − p〉

> (R+ ε)
√
R2 + 6Rε+ 34ε2

(
− R2 − 4Rε− 9ε2

(R+ ε)
√
R2 + 6Rε+ 34ε2

)
− 2εR− 2ε2

= −R2 + 2Rε+ 7ε2.

Now assume we are in scenario 2: ‖v − p‖ < (R− ε)/2 and ∠uvw ≤ π/2.
To prove the claim in this scenario, we will need to further split into two cases;

(i) ∠x̃1p̃x̃2 ≤ π/2, and
(ii) ∠x̃1p̃x̃2 > π/2.
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In case (i) we have 〈x̃1 − p̃, x̃2 − p̃〉 ≥ 0 and thus

〈x1 − p, x2 − p〉 ≥ −3Rε− 3ε3 > −R2 + 2Rε+ 7ε2

as R > 12ε.
In case (ii), thinking of the inner product in terms of the projection of vector

x̃2 − p̃ onto x̃1 − p̃ we get

〈x1 − p, x2 − p〉 ≥ −‖x̃1 − p̃‖‖v − p̃‖ − 3Rε− 3ε3

≥ −(R+ ε)(R− ε)/2− 3Rε− 3ε3

= −R2/2− 3Rε− 5ε2/2

> −R2 + 2Rε+ 7ε2,

where in the final inequality we use that R > 12ε.

To find sufficient conditions for detecting when a sample p is near a vertex, we
want each edge adjacent to that vertex to correspond to at least one distinct cluster
of points in the spherical shell around p. To avoid the clusters around separate
edges merging, we assume a lower bound on the angle between the edges as part of
our assumptions on the geometric embedding. The following lemma motivates this
choice of lower bound.

Lemma 2.3. Let u, v, w ∈ Rn, D > ε > 0, and let x1, x2 ∈ Rn satisfy

1. d(x1, uv), d(x2, uw) < ε, and
2. ‖x1 − v‖, ‖x2 − v‖ > D.

If

∠uvw > arccos

(
2D2 − 9ε2

2D2

)
+ 2 arcsin

( ε
D

)
then ‖x1 − x2‖ > 3ε.

Proof. The distance between x1 and x2 is minimised when

‖v − x1‖ = D = ‖v − x2‖.

Furthermore we can observe that ∠uvx1 = arcsin
(
d(x1,uv)
‖x1−v‖

)
≤ arcsin(ε/D). Simi-

larly ∠uvx1 ≤ arcsin(ε/D). This implies

∠x1vx2 ≥ ∠uvw − ∠uvx1 − ∠wvx2 ≥ α− 2 arcsin(ε/D).

Combining we conclude

‖x1 − x2‖2 ≥ ‖v − x1‖2 + ‖v − x2‖2 − ‖v − x1‖‖v − x2‖ cos∠x1vx2

≥ 2D2 − 2D2 cos(α− 2 arcsin(ε/D))

≥ (3ε)2.
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3. Determining local structure. Given an ε-sample P of an embedded graph
|G|, we want to recover the abstract graph G by approximating the local structure
of |G| at each sample p ∈ P . When approximating the local structure at a sample
p, we regularly consider the graph on a set of points, with edges (p, q) if ‖p−q‖ ≤ r,
for some fixed r ∈ R.

Definition 3.1. Let P ⊂ RN be a finite collection of points, and fix r > 0. The
graph at threshold r on P , Gr(P ), is the graph with vertices p ∈ P , and edges (p, q)
if ‖p− q‖ ≤ r.

For each p ∈ P , we will consider two graphs on points close to p: the first
approximates the connectedness of |G| intersected with a ball around p, the second
consists of points in a spherical shell around p. We call this pair of graphs the
(R, ε)-local structure of P at p.

Definition 3.2 ((R, ε)-local structure). Let P ⊂ Rn be an ε-sample of an embedded
graph |G| and fix R > 12ε. The (R, ε)-local structure of P at a sample p ∈ P is the
pair

(
G3ε(P ∩BR+ε(p)),G3ε(P ∩ SR+ε

R−ε(p))
)
.

We want to use the (R, ε)-local structure to approximate |G| ∩ BR(p) for each
p ∈ P , and use this to learn the structure of |G|. We will classify samples as being
near a vertex or not near a vertex by their (R, ε)-local structure.

We now formalise what the (R, ε)-local structure is for points p ∈ P not near
any vertex v ∈ |G|. That is, points which have (R, ε)-local structure of an edge.

Definition 3.3 (Local structure of an edge). Let P be an ε-sample of a linearly
embedded graph |G|. A point p ∈ P has the (R, ε)-local structure of an edge if
either of the following hold:

1. G3ε(P ∩BR+ε(p)) is disconnected,

2. G3ε(P ∩BR+ε(p)) is connected, G3ε(P ∩SR+ε
R−ε(p)) has two connected compo-

nents c1, c2 with average points q1 and q2, and

〈q1 − p, q2 − p〉 ≤ −R2 + 2Rε+ 7ε2.

We now define the (R, ε)-local structure of a vertex.

Definition 3.4 (Local structure of a vertex). Let P be an ε-sample of a linearly
embedded graph |G|. A point p ∈ P has the (R, ε)-local structure of a vertex if
either of the following hold:

1. G3ε(P ∩BR+ε(p)) is connected, and the number of connected components in

G3ε(P ∩ SR+ε
R−ε(p)) is not 2,

2. G3ε(P ∩BR+ε(p)) is connected, G3ε(P ∩SR+ε
R−ε(p)) has two connected compo-

nents c1, c2 with average points q1 and q2, and

〈q1 − p, q2 − p〉 > −R2 + 2Rε+ 7ε2.

Next, we formally define P0 and P1.
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Definition 3.5 (P0 and P1). Given an ε-sample P of a linearly embedded graph
|G| ⊂ Rn, we define the partitioning sets P0 and P1 as follows:

P0 = {p ∈ P | p has the (R, ε)-local structure of a vertex.}
P1 = {p ∈ P | p has the (R, ε)-local structure of an edge.}

Remark 3.6. Note that a sample p ∈ P has either (R, ε)-local structure of a vertex
(R, ε)-local structure of an edge. Hence, the partitioning defined in Definition 3.5
is disjoint.

As we use the connected components of G3ε(P ∩BR+ε(p)) and G3ε(P ∩SR+ε
R−ε(p))

in the definition of the (R, ε)-local structure of p, we require some assumptions on
|G| to ensure that we correctly identify when points are near vertices or not. To
ensure G3ε(P ∩ BR+ε(p)) is not disconnected for points p near some vertex, we
assume that the distance between a vertex v and any edge uw, u, v 6= v, is bounded
below d(v, wv) > R + R

2 + 2ε. To ensure that there are samples near edges which
are not near any vertex, we additionally assume that for every pair of vertices u, v,
‖u− v‖ > 9R

2 + 6ε.
We also place lower and upper bounds on the angles between edges. For ease of

notation, we will define two functions for these bounds.

Definition 3.7. Given R > 12ε, we set

Ψ(R, ε) := π − arctan

(
R+ 3ε

6ε

)
+ arcsin

(
R2 − 4Rε− 9ε2

(R+ ε)
√
R2 + 6Rε+ 34ε2

)
,

Φ(R, ε) := arccos

(
(R− ε)2 − 18ε2

(R− ε)2

)
+ 2 arcsin

(
2ε

(R− ε)

)
.

To improve intuition of these functions, Figures 3.2 and 3.3 provide graphs of
them. Note they are effectively a function of Rε as they are invariant to scaling both
R and ε by the same amount.

Figure 3.2. Graph of Ψ
(
R
ε , 1
)
.

Figure 3.3. Graph of Φ
(
R
ε , 1
)
.
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Henceforth, we assume that all embedded graphs |G| satisfy the following as-
sumptions.

Assumption 3.8. Fix R ≥ 12ε > 0. We restrict to embedded graphs |G| = (G,φG)
satisfying the following.

1. For all vertices u, v, ‖u− v‖ > 9R
2 + 6ε.

2. For a vertex v and an edge uw, with u,w 6= v, d(v, uw) > 3R
2 + 4ε.

3. For any pair of edges uv, xy with no common vertex, d(uv, xy) > 5ε.
4. For all pairs of edges uv,wv, ∠uvw ≥ Φ(R, ε).
5. For all degree 2 vertices v with edges uv,wv, ∠uvw ≤ Ψ(R, ε).

The propositions in this section are used to show that the clusters in P0 and
P1 correspond bijectively with the vertices and edges of |G|. The first proposition
shows that for all samples p near a vertex v with deg(v) 6= 2, p has the (R, ε)-
local structure of a vertex. The second and third prove that samples near degree 2
vertices also have the (R, ε)-local structure of a vertex. The final proposition shows
that all samples p not near any vertex have the (R, ε)-local structure of an edge.

Proposition 3.9. Let v be a vertex of |G| ⊂ Rn with deg(v) 6= 2, and let P be
an ε-sample of |G|. Then for all p ∈ P with ‖p − v‖ ≤ R−ε

2 , p has the (R, ε)-local
structure of a vertex.

Proof. We begin by considering deg(v) = 0. By Assumptions 3.8 (1), ‖p− v‖ ≤ ε,
and for all q ∈ P ∩B(p,R+ ε), ‖q− v‖ ≤ ε. Thus G3ε (P ∩BR+ε(p)) is connected.

Similarly, P ∩ SR+ε
R−ε(p) = ∅, and p has the (R, ε)-local structure of a vertex.

Next, assume deg(v) = 1. For the edge uv, let t0, t1, . . . , tm be consecutive
points along uv with ‖t0 − v‖, ‖ti+1 − ti‖ ≤ ε and ‖p − tm‖ = R + ε. Then, there
must be z0, z1, . . . , zm ∈ P with ‖ti − zi‖ ≤ ε. Note, these zi may not be unique.
Since ‖zi − zi+1‖ ≤ 3ε, and every sample in P ∩ BR+ε(p) is within 3ε of some zi,
G3ε (P ∩BR+ε(p)) is connected.

If the number of clusters in G3ε(P ∩SR+ε
R−ε(p)) is not 2, then p has the (R, ε)-local

structure of a vertex. Thus suppose that there are 2 connected components. We
will show that inner product condition between their averages will declare that p
has the (R, ε)-local structure of a vertex.

Let x1, x2 ∈ P ∩ SR+ε
R−ε(p) be samples in the two connected components c1 and

c2. Observe that both x1 and x2 are within ε of the line segment uv.
As ‖p − v‖ ≤ R−ε

2 , and x1, x2 are within ε of the same edge uv, x1 and x2 are
contained on the same side of hyper-plane H through p perpendicular to vu.

We can observe that ∠x1px2 ≤ 2 arccos
(

2ε
R−ε

)
< π/2, and thus

〈x1 − p, x2 − p〉 > 0 > −R2 + 2Rε+ 7ε2.

p

v

q2

q1

u

Figure 3.4. Both q1 and q2 are in the same half-space generated
by the hyper-plane through p perpendicular to uv.
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As this holds for all x1 ∈ c1, x2 ∈ c2, it also holds for the averages q1 and q2.
Thus p has the (R, ε)-local structure of a vertex.

Finally, assume deg(v) ≥ 3. From analogous arguments as in the degree 1 case
we know that G3ε (P ∩BR+ε(p)) is connected.

Now consider SR+ε
R−ε(p). For each edge uv, there is a sample xuv ∈ SR+ε

R−ε(p). To

show there are at least 3 connected components in G3ε(P ∩SR+ε
R−ε(p)), we need only

check that samples from different edges cannot merge to be in the same connected
component in G3ε(P ∩SR+ε

R−ε(p)). By way of contradiction suppose there were edges

uv and wv and samples xu, xv ∈ P ∩ SR+ε
R−ε(p) within ε of uv and wv respectively

such that ‖xu−xw‖ ≤ 3ε. As ‖p−v‖ ≤ (R−ε)/2 and ‖p−xu‖, ‖p−xv‖ ≥ R−ε we
know ‖v − xu‖, ‖v − xw‖ > (R − ε)/2. This contradicts Lemma 2.3 as this implies
that ‖xu − xv‖ > 3ε.

We conclude that G3ε(P ∩SR+ε
R−ε(p)) has at least as many connected components

as the degree of v. Thus, p has the (R, ε)-local structure of a vertex.

Proposition 3.10. Let v be a vertex of |G| ⊂ Rn with deg(v) = 2, with edges
uv,wv. Let P be an ε-sample of |G|. If ∠uwv > π

2 , then for all p ∈ P with
‖p− v‖ ≤ 4ε, p has the (R, ε)-local structure of a vertex.

Proof. As in the proof Proposition 3.9, G2ε(P ∩BR+ε(p)) is connected.

For both edges uv,wv there is at least one sample in SR+ε
R−ε(P ), say quv and qwv.

By Lemma 2.3, for all q′ in SR+ε
Rε
∩P , if d(q′, qwv) ≤ 3ε, then ‖q′− q‖ > 3ε. Hence,

each edge contributes at least 1 connected component to G3ε(P ∩ SR+ε
R−ε(p)).

If there are more than 2, then p has the (R, ε)-local structure of a vertex. We now

assume there are 2 connected components c1, c2 (one per edge) in G3ε(P ∩SR+ε
R−ε(p)).

Lemma 2.2 gives

〈q1 − p, q2 − p〉 > −R2 + 2Rε+ 7ε2,

and p has the (R, ε)-local structure of a vertex.

Proposition 3.11. Let v be a vertex of |G| ⊂ Rn with deg(v) = 2, with edges
uv,wv. Let P be an ε-sample of |G|. If ∠uvw ≤ π

2 , then for all p ∈ P with

‖p− v‖ ≤ R−ε
2 , p has the (R, ε)-local structure of a vertex.

Proof. As in the proof of Proposition 3.9, G2ε(P ∩BR+ε(p)) is connected.

For both edges uv,wv there is at least one sample in SR+ε
R−ε(P ), say quv and qwv.

By Lemma 2.3, for all q′ in SR+ε
Rε
∩P , if ‖q′− qwv‖ ≤ 3ε, then ‖q′− q‖ > 3ε. Hence,

each edge contributes at least 1 connected component to G3ε(P ∩ SR+ε
R−ε(p)).

If there are more than 2, then p has the (R, ε)-local structure of a vertex. We now

assume there are 2 connected components c1, c2 (one per edge) in G3ε(P ∩SR+ε
R−ε(p)).

Let x1 and x2 be points in c1 and c2. Without loss of generality, we have
d(x1, uv), d(x2, wv) ≤ ε.

From Lemma 2.2 we know that 〈x1 − p, x2 − p〉 < −R2 + 2Rε + 7ε2. Since this
inequality holds for all pairs x1, x2 in the connected components c1 and c2 we know
it also holds for the averages q1 and q2. Thus we conclude p has the (R, ε)-local
structure of a vertex.
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w

u

v

p

q2

q1

q̃2

q̃1
p̃

Figure 3.5

Figure 3.6. The case where ∠uvw ≤ π
2 .

Proposition 3.12. Let p ∈ P be a sample with ‖p − v‖ > 3R+ε
2 for all vertices

v ∈ |G|. Then p has the (R, ε)-local structure of an edge.

Proof. We begin by showing that if there is a sample q ∈ SR+ε
R−ε(p)∩P with d(q, uv) >

ε, then G3ε (BR+ε(p) ∩ P ) is disconnected. To prove this suppose not. Then there
exists x, y ∈ BR+ε(p)∩P such that d(x, uv) < ε, d(y, uv) > ε and yet ‖x− y‖ < 3ε.

This splits into two cases:

(i) d(y, wv) ≤ ε for some vertex w 6= u (noting that this case covers an edge wu
as well),

(ii) d(y, wz) ≤ ε for vertices w, z 6= u, v.

For case (i), first observe that ‖x−v‖, ‖y−v‖ > R−ε
2 . We then get a contradiction

via Lemma 2.3 (with D = R−ε
2 ) using Assumption 3.8 (4).

For case (ii) recall that Assumption 3.8 (3) implies d(uv,wz) > 5ε. However
d(uv,wz) < d(uv, x) + ‖x− y‖+ d(y, wz) ≤ 5ε which is a contradiction.

We thus conclude that if there is some q ∈ SR+ε
R−ε(p) ∩ P with d(q, uv) > ε then

G3ε(P ∩BR+ε(p)) is disconnected and p has the (R, ε)-local structure of an edge.
We can now assume that G3ε(P ∩ BR+ε(p)) is connected, and for all q ∈ P ∩

BR+ε(p), d(q, uv) ≤ ε. We need to show that there are two clusters of samples in

SR+ε
R−ε(p). Let n ∈ uv satisfy ‖p − n‖ = R, and assume that n and q are on the

same side of the hyper-plane H through p perpendicular to uv. Now let p̃, q̃ be the
projections of p and q respectively to uv.

We will split the analysis into the cases where ‖p̃ − q̃‖ ≤ ‖p̃ − n‖ and where
‖p̃− q̃‖ > ‖p̃− n‖.

v

p

p̃ n u

q̃

q

Figure 3.7. The case where ‖p̃− q̃‖ < ‖p̃− n‖.

Consider ‖p̃ − q̃‖ ≤ ‖p̃ − n‖, as in Figure 3.7. Note that ‖p̃ − n‖ ≤ R and

‖p̃− q̃‖ ≥
√

(R− ε)2 − (2ε)2 which implies
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‖q − n‖2 = ‖q − q̃‖2 +
(
‖p̃− n‖ − ‖p̃− q̃‖2

)
≤ ε2 +

(
R−

√
(R− ε)2 − 4ε2

)2

. (4)

Now consider ‖p̃− n‖ < ‖p̃− q̃‖, such as in Figure 3.8. Here we use the bounds

‖p̃− n‖ ≥
√
R2 − ε2 and ‖p̃− q̃‖ ≤ R+ ε to say

‖q − n‖2 = ‖q − q̃‖2 + (‖p̃− q̃‖ − ‖p̃− n‖)2

≤ ε2 +
(√

(R+ ε)2 −
√
R2 − ε2

)2

. (5)

Algebraic manipulation shows that both (4) and (5) are bounded from above by
4ε2 whenever R > 12ε.

v

p

p̃ n u

q

q̃

Figure 3.8. The case where ‖p̃− q̃‖ > ‖p̃− n‖.

Thus, for all q on the same side of H as n with ‖p−q‖ ≤ R, we have ‖q−n‖ ≤ 2ε.
As n ∈ uv, there is a sample qn ∈ P with ‖n − qn‖ ≤ ε. Importantly since

Bε(n) ⊂ SR+ε
R−ε(p) we can say that qn connects to all the P ∩ SR+ε

R−ε(p) on the same

side of H within G3ε

(
P ∩ SR+ε

R−ε(p)
)
.

Thus, on each side of H, we have a single cluster of points, which are connected
at 3ε. Thus, G3ε

(
P ∩ SR+ε

R−ε(p)
)

has two connected components. Then, Lemma 2.1
implies that p has the (R, ε)-local structure of an edge.

4. Algorithm and its correctness. In this section, we present the algorithm from
Skyler, and prove that given P an ε-sample of an embedded graph |G| = (G,φG)
satisfying Assumptions 3.8, the algorithm returns an isomorphic graph structure.
The algorithm partitions P into P0 and P1, such that for each p ∈ P0, p has the
(R, ε)-local structure of a vertex, and for each p ∈ P1, p has the (R, ε)-local structure
of an edge. We then detect the number of vertices, the number of edges and the
boundary operator. To obtain P0 and P1, we use the function ∆R,ε : P → {0, 1},
(Algorithm 1), such that if p has (R, ε)-local structure of a vertex ∆R,ε(p) = 0

and if p (R, ε)-local structure of an edge, ∆R,ε(p) = 1. Then, P0 = ∆−1
R,ε(0) and

P1 = ∆−1
R,ε(1).

For each vertex v ∈ |G|, if deg(v) 6= 2, Proposition 3.9 implies that for all p ∈ P
with ‖p − v‖ ≤ R

2 , ∆R,ε(p) = 0, while if deg(v) = 2, Propositions 3.10 and 3.11

imply that ∆R,ε(p) = 0, and Proposition 3.12 implies that if ‖p − v‖ > 3R
2 + 2ε,

∆R,ε(p) = 1.

Lemma 4.1. Let x ∈ P0 and ‖x− v‖ < 3R
2 + ε for vertex v. Then y ∈ P0 is in the

same connected component as x in G 3R
2 +2ε(P0) if and only if ‖y − v‖ < 3R

2 + ε.

Proof. By Proposition 3.12 P0 ⊂ P ∩
{⋃

v∈V B 3R
2 +ε(v)

}
. Our embedding assump-

tions require that for vertices v 6= v′ we have ‖v−v′‖ > 9R
2 +3ε and hence no points

http://github.com/yossibokor/Skyler.jl
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in P ∩ B 3R
2 +ε(v

′) are within 3R
2 + ε of those in B 3R

2 +ε(v
′). This means they can

not be connected in G 3R
2 +2ε(P0). This implies that the entire connected component

containing x must lie in B 3R
2 +ε(v). If ‖y − v‖ > 3R

2 + ε then it cannot be in the

same connected component as x.
We finally wish to show that ‖y − v‖ < 3R

2 + ε implies that x and y are in the
same connected component. Choose vertices uy and ux such that d(y, uyv) < ε and
d(x, uxv) < ε. Now let zy ∈ uv be the point 3ε from v. We analogously define zx.
As P is an ε-sample of |G| we have samples py and px such that ‖py − zy‖ < ε and
‖px − zx‖ < ε. Note that py, px ∈ P ∩ B4ε(v) and hence by Propositions 3.9 and
3.10 we know that py, px ∈ P0. By construction ‖y − py‖, ‖py − px‖ and ‖px − x‖
are all less that 3R

2 + ε and hence y and x are in the same connected component in
G 3R

2 +2ε(P0).

The above lemma shows the correspondence between vertices in G and connected
components in G 3R

2 +2ε(P0). Unfortunately, the situation is less clean for the con-

nected components of G3ε(P1). Around each vertex v there is a ‘grey area’, in
which samples p can be placed in either P0 or P1. Due to the size of this spherical
shell, it is possible to obtain connected components in G3ε(P1) which contain points
only within such a grey area. We devote the next few results to characterising the
connected components of G3ε(P1). We first show that every connected component
of G3ε(P1) is close to only one edge.

Proposition 4.2. Let [x] be a connected component of G3ε(P1). Then there exists
an edge uv such that d(y, uv) < ε for all y ∈ [x].

Proof. Since every sample in P is within ε of some edge it is sufficient to show that
if p, q ∈ P1 with d(p, uv) ≤ ε and ‖p− q‖ ≤ 3ε then d(q, uv) < ε.

As p ∈ P1, Propositions 3.9, 3.10 and 3.11 imply

1. For all vertices w ∈ |G| with deg(w) 6= 2, ‖p− w‖ > R−ε
2 ,

2. For all vertices w with deg(w) = 2, ‖p− w‖ ≥ 4ε.

Without loss of generality, assume ‖p−v‖ ≤ ‖p−u‖. By Assumptions 3.8 (3) for
all edges xy with x, y distinct from u, v, d(uv, xy) > 5ε. Hence, d(p, xy) > 4ε, and
for any sample q with d(q, xy) ≤ ε, ‖p−q‖ > 3ε. If deg(v) 6= 2, then ‖p−v‖ > R−ε

2 ,
and as |G| satisfies Assumptions 3.8 (4), Lemma 2.3 implies ‖p − q‖ > 3ε for all
q ∈ P1 with d(q, uv) > ε.

Now assume that deg(v) = 2, and consider another edge wv. For Φ(R, ε) ≤
∠uvw < π

2 we can apply Lemma 2.3 with D = R−ε
2 to see that for all q ∈ P1

with d(q, wv) ≤ ε, ‖q,−p‖ > 3ε. For π
2 ≤ ∠uvw ≤ Ψ(R, ε), we apply Lemma 2.3

with D = 4ε and observe that π/2 > arccos(23/32) + 2 arcsin(1/4) to conclude that
d(q, wv) ≤ ε, ‖q − p‖ > 3ε.

There can be multiple connected components in G3ε(P1) near the same edge.
However, there will only be one which contains a sample near the midpoint of the
edge. We wish to treat these differently, and so we will give them a name.

Definition 4.3. We say that the connected component of G3ε(P1) spans the edge
uv if it contains a point within ε of the midpoint of uv. Without reference to the
specific edge uv we say that the component is spanning.

Proposition 4.4. Let uv be an edge in G. There exists a unique connected compo-
nent Auv which spans uv. Auv contains samples in both B 3R+5ε

2
(u) and B 3R+5ε

2
(v).
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If [x] 6= Auv is a connected component in G3ε(P1) within ε of uv then either
[x] ⊂ B 3R+ε

2
(u) or [x] ⊂ B 3R+ε

2
(v).

Proof. Let m denote the midpoint of uv.
Let t0, t1, . . . t2M be consecutive points along uv with ‖ti− ti+1‖ < ε, ‖t0− u‖ =

3R+3ε
2 , tM = m, and ‖t2M − v‖ = 3R+3ε

2 . There must be z0, z1z2, . . . zM ∈ P such

that ‖ti − zi‖ < ε. Observe that ‖zi − u‖ > 3R+ε
2 and ‖zi − v‖ > 3R+ε

2 and so by
Proposition 3.12 all the zi are in P1. Since ‖zi− zi+1‖ < 3ε we know that all the zi
lie in the same connected component of G3ε(P1) which spans uv as zM is within ε
of m.

To see this connected component is unique, we need only observe that any pair
of samples in P1 both within ε of m are within 3ε of each other and hence lie in the
same connected component. Denote this unique connected component by Auv.

Observe that ‖u− z0‖ < 3R+3ε
2 + ε and ‖v − z2M‖ < 3R+3ε

2 + ε.
Now suppose that [x] 6= Auv is a connected component in G3ε(P1) within ε of

uv. Since [x] 6= Auv, we have d([x], ti) > 2ε for all i and hence

[x] ⊂ B 3R+ε
2

(u) ∪B 3R+ε
2

(v).

As ‖u− v‖ > 3R+ε
2 + 3R+ε

2 + 3ε we further conclude that [x] is contained in only
one of B 3R+ε

2
(u) or B 3R+ε

2
(v).

In light of Proposition 4.4 we modify our partition of P , into P̃0 and P̃1, see
Definition 4.5 and Algorithm 2. We effectively want to move any points in P1 that
are not contained in a spanning connected component into P0.

Definition 4.5 (P̃0 and P̃1). Let P be an ε-sample of an embedded graph |G|
satisfying Assumptions 3.8, and consider the sets P0 and P1 from Definition 3.5. Let
Q0 be the connected components of G 3R

2 +2ε(P0), and Q1 the connected components

of G3ε(P1), and define f : Q1 → {0, 1} by f([q]) = 0 when there is only a single
connected component [p] ∈ Q0 such that d([p], [q]) < 3ε, and f([q]) = 1 otherwise.

We define P̃0 := P0 ∪
(⋃

f([x])=0[x]
)

and P̃1 :=
(⋃

f([x])=1[x]
)

.

Lemma 4.6. Let [x] ∈ Q1. Then f([x]) = 1 if and only is [x] spans an edge, and
f([x]) = 0 if and only if [x] ⊂ B 3R+ε

2
(v) for some vertex v.

Proof. If [x] spans an edge uv then by Proposition 4.2 we know that [x] contains
samples in both B 3R+5ε

2
(u) and B 3R+5ε

2
(v). Let xu ∈ [x] be the sample closest

to u. Note that ‖xu − u‖ ≤ 3R+5ε
2 . There must be some sample pu ∈ P with

‖p − u‖ ∈< ‖u − xu‖ and ‖p − xu‖ < 3ε. Now p ∈ P0 as otherwise it contradicts
xu being the closest sample to u inside [x]. By Lemma 4.1, [pu] ∈ Q0 is contained
in B 3R+ε

2
(u).

Similarly we can show that there some xv ∈ [x] and pv ∈ P0 with ‖xv − pv‖ ≤ 3ε
and [pv] ∈ Q0 contained in B 3R+ε

2
(v). By Lemma 4.1 [pu] and [pv] are distinct and

hence f([x]) = 1.
If [x] does not span any edge then by Proposition 4.2 we know there is a vertex

v such that [x] ⊂ B 3R+ε
2

(v). We then can appeal to Lemma 4.1 to say that there is

only one connected component in Q0 within 3ε of [x].

Let Q̃0 denote the connected components of G 3R
2 +2ε(P̃0) and let Q̃1 denote the

connected components of G3ε(P̃1). We will see that characterisation of the elements
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of Q̃0 is the same as that of Q0. The elements of Q̃1 are exactly those connected
components that span some edge.

Theorem 4.7. For each vertex v there exists a unique connected component [x] ∈
G 3R

2 +2ε(P̃0) such that [x] ⊂ B 3R
2 +2ε(v). Every connected component of G 3R

2 +2ε(P̃0)

is of this form.

For each edge uv there exists a unique connected component [x] ∈ G3ε(P̃1) such

that [x] spans uv. Furthermore every connected component of G 3R
2 +2ε(P̃1) is of this

form.

Proof. From Proposition 3.12 and Lemma 4.6 we know that P̃0 ⊂
⋃
v B 3R+ε

2
(v). We

can then effectively repeat the proof of Lemma 4.1 to show the analogous result for

P̃0.

To see the bijection between the vertices of G and Q̃0 observe that every sample

within 4ε of some vertex is in P0 ⊂ P̃0 and hence every vertex corresponds to some

connected component, and observe that by Lemma 4.6 all points in P̃0 lie within
3R+ε

2 of some vertex.

The characterisation for connected components of G3ε(P̃1) follows directly from
Proposition 4.2 and Lemma 4.6.

Define the map F0 : Q̃0 → V by F0([x]) = argminv∈V {d([x], v)} and F1 : Q̃1 → E
by F1([x]) = argminuv∈E{d([x],midpt(uv)}.

That F0 and F1 are well defined bijections follows directly from Theorem 4.7.

From Proposition 4.2 we further can say that if [q] ∈ Q̃1 and [x] ∈ Q̃0 then the single
linkage distance between [q] and [x] is less than 3ε if and only if F0([x]) ∈ ∂G(F1([q]).

Algorithm 1: ∆R,ε(p)

Data: An ε-dense sample P of an embedded graph |G|, a point p ∈ P .
Result: 0 if p has local structure of a vertex, 1 if p has local structure of an

edge.
begin
Gp ←− {q ∈ P | ‖p− q‖ ≤ R+ ε};
connect q, q′ ∈ Gp if ‖q − q′‖ ≤ 3ε;

if Gp is disconnected then
return 1

else
remove q ∈ Gp if ‖p− q‖ ≤ R− ε;
if number of connected components in Gp is not 2 then

return 0
else

find the midpoints q1, q2 of the connected components c1 and c2;

if 〈q1 − p, q2 − p〉 > −R2 + 2Rε− 7ε2 then
return 0

else
return 1
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Algorithm 2: Abstract Structure

Data: Partition of P into P0 and P1.

Result: Partitions P̃0, P̃1, abstract graph G = (E, V ).
begin

E ←− ∅;
V ←− ∅;
P̃0 ←− P0;

P̃1 ←− P1;

for connected components [p] ∈ G 3R
2 +2ε(P0) do

add [p] to V

for connected components [q] ∈ G3ε(P1) do
Bq ←− ∅;
for [p] ∈ V do

if minp′∈[p],q′∈[q] ‖p′ − q′‖ ≤ 3ε then
add [p] to Bq

if size(Bq) = 1 then

add all q′ ∈ [q] to P̃0 and remove them from P̃1

else
add Bq to E

return P̃0, P̃1, V, E

Algorithm 3: Expectation Maximisation for Vertex Location Prediction

Data: |P | data points in n dimensions, N0 +N1 = N many strata pieces.
Result: Predicted embedded graph vertex locations.
Input: Abstract graph structure.
begin

Initialise vertex locations V ;

Initialise |P | ×N strata assignment matrix A ;

for si in strata pieces S = V ∪ E, xj in data points do
if xj ∈ si then

Ai,j ←− 1

else
Ai,j ←− 0

assign an error threshold σ ∈ R+;

Initialise πi =
∑

i Ai,j∑
i,j Ai,j

;

for iterations in EM-iterations do
for si in strata pieces S = V ∪ E, xj in data points do

assign Ai,j = E(1Zj=1|Xj = xj) through (10) ;

assign πi =
∑

i Ai,j∑
i,j Ai,j

;

assign V = arg minV V → C(V,Π;σ) (9) through a hill climbing
optimiser such as gradient-descent;
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5. Vertex prediction. Thus far, the focus has been on finding the abstract struc-
ture of an embedded graph |G|. We now aim to form a numerical scheme to esti-
mate the vertex locations of |G| ⊂ Rn. In [4], a non-linear least-squares method
was proposed and used for embedded graph reconstruction. Empirical observation
of this method showed vertex predictions were often not within ε of the true em-
bedded graph. A point of difficulty here was that data that should belong to a
one-dimensional strata piece was often assigned to a zero-dimensional strata when
nearby a vertex location. We utilise an Expectation-Maximisation (EM) algorithm,
which updates both the predicted vertex locations, and their strata assignments to
correct this issue. To do this, we design a likelihood function with latent variables
for strata assignment so that we may reconstruct a probability measure over the
embedded graph from which our data is sampled. Ideally, we would reconstruct a
measure ν whose support is the embedded graph. Recorded data has errors and
makes it computationally infeasible to reconstruct ν directly. Instead, we will for-
mulate an approximating measure νδ which satisfies:

1. νδ is equivalent to Lebesgue measure,
2. supp(limδ→0 νδ) = |G|,

where the limit is meant in the weak sense. The first assumption gives robustness to
measurement errors, and the second ensures that in ideal circumstances, we form a
measure that is supported on the embedded graph. There are many measures which
obey these conditions, we choose a Gaussian convolution model for each strata piece
and combine all the strata pieces together through a categorical mixture model.

5.1. Embedded graph model. Let (Ω,F , µ) be a probability space, that is Ω is
a set, F is a σ-algebra of sets from Ω, and µ : F 7→ [0, 1] is a normalised measure.

Definition 5.1. Given a probability space (Ω,F , µ) and a field with a σ-algebra B,
a measurable function f : (Ω,F , µ) 7→ (F,B) is a random variable. A vector valued

random element is a vector valued measurable function f̃ : (Ω,F , µ) 7→ (Rn,B(Rn))

given through f̃ = (f1, . . . , fn) where each of the fi are random variables.
The expectation of a random variable is the integral, E(f) :=

∫
Ω
fdµ. Given a

sub-σ-algebra C ⊂ F , the conditional expectation of a random variable f , E(f |C) ∈
L2(Ω,F , µ), is the unique function that satisfies

∫
B

E(f |C)dµ =

∫
B

fdµ,

for all B ∈ C. The expectation and conditional expectation of a vector valued
random element f̃ = (f1, . . . , fn) is defined component-wise through each of the
random variables fi, that is

E(f̃ |C) := (E(f1|C), . . . ,E(fn|C)) (6)

for all C ∈ B(Rn).

Above, we have adopted the standard notation B(Rn) for the Borel-σ-algebra
generated by the open sets in the standard topology on Rn. Let Xj : (Ω,F , µ) 7→
(Rn,B(Rn)) be vector valued random elements and Zj : (Ω,F , µ) 7→ ([N ], 2[N ]) be
random variables for j ∈ {1, . . . , |P |}, where [N ] := {1, . . . , N}, n is the dimension
of the space to which the graph is embedded, |P | is the amount of recorded data
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points, and N the number of strata in |G|. Let N0, N1 ∈ N0 be N0 and N1 are the
number of zero and one dimensional strata respectively, and so N = N0 +N1.

Enumerate the set of vertex locations as V := {vi}N0
i=1. For each i ∈ {N0 +

1, . . . , N} assign the pairing vi1 , vi2 ∈ {vi}
N0
i=1 to be the vertices that form the

boundary ith strata piece. Assume that for each j the Zj are independent and
identically distributed, that each Xj is independent of Xi and Zi for i 6= j.

We place the following constraints on the random variables:

1. Zj ∼ Categorical(Π) with parameters Π := (π1, . . . , πN ),
2. E(Xj |Zj = i) ∼ Normal(vj , σj) for j ∈ {1, . . . , N0},
3. E(Xj |Zj = i) = tjvi1 + (1− tj)vi2 + ε where tj ∼ Uniform([0, 1]) and
εj ∼ Normal(0, σi) for i ∈ {N0 + 1, . . . , N}.

The categorical random variables Zj represent which stratum a random element
Xj belongs to. The categorical distribution is defined on N many categories, with
the ith category having a probability of πi of being observed. In our case, each πi
represents approximately how many data points belong to the ith stratum.

The distribution of E(Xj |Zj = i ∈ {N0 + 1, . . . , N}) = tvj1 + (1− t)vj2 + ε is

ρvi1 ,vi2 (x;σi) :=
1

(2πσ2
i )n/2

∫ 1

0

e−‖x−(tvi1+(1−t)vi2 )‖22/2σ
2
i dt, (7)

where ρ( · ; 0, σi) is a normal density in n dimensions with zero mean and variance
σ2
i . This can be obtained through noting that if νvi1 ,vi2 is uniform measure on

Lvi1 ,vi2 := {y | y = tvi1 + (1− t)vi2 , t ∈ [0, 1]}, then the measure

νσi,vi1 ,vi2
= ρvi1 ,vi2 (x;σi)dx

is given through

νσi,vi1 ,vi2
= ρ(x; 0, σi)dx ∗ νvi1 ,vi2

=
1

(2πσ2
i )n/2

∫ 1

0

e−‖x−(tvi1+(1−t)vi2 )‖22/2σ
2
i dtdx,

where ∗ represents the convolution operation over measures. Through this convo-
lution construction, we have the following proposition.

Proposition 5.2. Let ρvi1 ,vi2 and νvi1 ,vi2 be as given above, then:

1. ρvi1 ,vi2 ∈ C
∞(Rn),

2. ρvi1 ,vi2dx is equivalent to Lebesgue measure,

3. and νσi,vi1 ,vi2

σi→0−−−→ νvi1 ,vi2 weakly.

The first two claims follow from Equation 7. The third is a result from mollifier
approximation theory, see [10] for details.

Corollary 5.3. Define σ := maxi σi and let νσ := µ(X−1
j ) be the push-forward

measure of µ through Xj, then

1. νσ ∼ dx,
2. supp(limσ→0 νσ) = |G|,
3. limσ→0 νσ(|G|) = 1,

where |G| is the embedded graph in Rn.

Proof. Write νσ through
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νσ =

N0∑
i=1

πiρ(x; vi, σi)dx+

N∑
i=N0+1

πiρvj1 ,vj2 (x;σi)dx

=

N0∑
i=1

πi(δvi ∗ ρ(x; 0, σi)dx) +

N∑
i=N0+1

πi(νvi1 ,vi2 ∗ ρ(x; 0, σi)dx)

where δvi is the normalised measure: δvi(U) = 1 if vi ∈ U and zero otherwise. Let
|G| be the embedded graph and define |G|r := {x | x ∈ Br(y), y ∈ |G|}, then

νσ(Rn \ |G|r) ≤
∫
Rn\|G|r

(
N0∑
i=1

πiδvi +

N∑
i=N0+1

πiνvi1 ,vi2

)
∗ ρ(x; 0, σ)dx

σ→0−−−→ 0 for all r > 0.

Corollary 5.3 shows the push-forward measure ν has our desired properties for
modelling an embedded graph |G|.

5.2. Parameter re-estimation. We now form an Expectation Maximisation (EM)
algorithm to find Maximum Likelihood Estimates (MLEs) for the embedded graph’s

vertex locations. Let P̃(Ω) be the space of probability measures over Ω. We are
interested in reconstructing the measure µ given evaluations of Xj and Zj for every
j ∈ {1, . . . , n}. This forms the following likelihood optimisation problem:

µ∗ := argsupη∈P̃(Ω)η

 ⋂
j∈{1,...,|P |}

X−1
j (Bh(xj)) ∩ Z−1

j (i)


for some small h > 0. For a single recorded datum:

η(X−1
j (Bh(xj)) ∩ Z−1

j (i)) = P(Xj ∈ Bh(xj) | Zj = i)P(Zj = i)

=

N0∏
i=1

(
πi

∫
Bh(xj)

ρ(x; vi, σi)dx

)1Zj=i N∏
i=N0+1

(
πi

∫
Bh(xj)

ρvj1 ,vj2 (x;σi)dx

)1Zj=i

.

Intersecting over all such data points, taking a logarithm, and evaluating the
limit as h→ 0 for the argument supremum yields the equivalent optimisation:

argsupπi∈[0,1], vi∈Rn

|P |∑
j=1

( N0∑
i=1

1Zj=i(log(ρ(xj ; vi, σi)) + log(πi))+ (8)

N∑
i=N0+1

1Zj=i(log(ρvi1 ,vi2 (xj ;σi)) + log(πi))
)
.

We cannot observe accurately Zj for a recorded datum, although the work in
estimating the abstract graph structure gives an initial estimate for this value. To
dynamically update the prediction of this value, we will utilise an EM-algorithm.
Projection to the sub-σ-algebra σ(X1, . . . , Xn) and making the assumption Zj ⊥ Xj̃

for j̃ 6= j gives the following log-likelihood function, which we aim to maximise:
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L(V,Π;σ) := (9)

1

|P |

|P |∑
j=1

( N0∑
i=1

E(1Zj=i|Xj ∈ Bh′(xj))(log(ρ(xj ; vi, σi)) + log(πi))+

N∑
i=N0+1

E(1Zj=i|Xj ∈ Bh′(xj))(log(ρvi1 ,vi2 (xj ;σi)) + log(πi))
)
,

where we currently view L as a function of the vertex locations V and assignment
weights Π, with σ being a fixed value. Let the densities for each k ∈ {1, . . . , N}
strata be enumerated as {ρk}Nk=1. The individual terms of the cost function are

lim
h′→0

E(1Zj=i|Xj ∈ Bh′(xj)) =
πiρi(xj)∑N
k=1 πkρk(xj)

(10)

log(ρ(x; vi, σi)) = −d
2

log(2πσi)− ‖x− vi‖2/2σi.

log(ρvi1 ,vi2 (x;σi)) = log
(

erf

(
〈vi1 − vi2 , vi1 + vi2 − 2x〉+ ‖vi1 − vi2‖22

2
√

2‖vi1 − vi2‖2σi

)
− erf

(
〈vi1 − vi2 , vi1 + vi2 − 2x〉 − ‖vi1 − vi2‖22

2
√

2‖vi1 − vi2‖2σi

))
+
〈vi1 − vi2 , vi1 + vi2 − 2x〉2 − 4‖vi1 − vi2‖22‖(vi1 + vi2)/2− x‖22

8‖vi1 − vi2‖22σ2
i

− log(‖vi1 − vi2‖2) + log
(

2
1
2 (−d−1)π

1
2−

d
2 σ1−d

i

)
.

Above, erf : R 7→ R is the standard error function given through

erf(x) =
2√
π

∫ x

0

exp(−t2)dt.

In Skyler, the analytic gradients of the log-likelhood function L are given. Gradient
clipping is used to bound our computations within machine accuracy for when σi or
the evaluation of x 7→ ρvi1 ,vi2 (x;σi) is close to machine precision. Our log-likelhood

function is often not concave, for instance the function (vi1 , vi2) 7→ ρvi1 ,vi2 (x;σi)

obeys ρvi1 ,vi2 (x;σi) = ρvi2 ,vi1 (x;σi). It is necessary to have a good initialisation for
the embedded graph modelling to find an acceptable local optimum value for vertex
prediction. In our computations, we have found that the initial vertex modelling
given by the abstract graph structure yields vertex predictions with an error less
than the noise of the data, correcting the issue observed in [4]. We can complete
Algorithm 3 by noting that if Ai,j := limh′→0 E(1Zj=i|Xj ∈ Bh′(xj)), then the
function Π → L(V,Π;σ) is concave and has a unique maximum value at π∗i =∑

j Ai,j∑
i,j Ai,j

. It can be seen that our model is a higher-dimension version of Gaussian

clustering as Algorithm 3 degenerates to this when N = N0.
Fixing a noise tolerance σ and solving the optimisation in Equation 8 by minimis-

ing the function (V,Π)→ L(V, σ,Π) through an EM-algorithm [7] gives Algorithm
3.

http://github.com/yossibokor/Skyler.jl
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Ratio Correct Log Likelihood v1 v2 v3 v4 v5

R/ε structure (Equation 9)

0
0
0

  4.6
6.24

0

 4.86
0.51
3.47

 −1.32
6.29

4

 −4.23
−3.48
−3


4 No - - - - - -

6 Yes −33.183

0.00
0.03
0.01

  4.59
6.23
−0.02

 4.56
0.56
3.43

 −1.30
6.26
3.96

 −4.24
−3.46
−3.02


8 Yes −32.97

0.00
0.02
0.01

 4.59
6.23
−.02

 4.86
0.56
3.42

 −1.29
6.26
3.96

 −4.22
−3.45
−3.01


10 Yes −33.33

0.01
0.03
0.01

  4.59
6.22
−0.02

 4.86
0.56
3.42

 −1.26
6.24
3.95

 −4.19
3.42
−2.99


12 Yes −33.84

0.01
0.03
0.01

  4.59
6.23
−0.02

 4.86
0.56
3.42

 −1.26
6.24
3.95

 −4.14
−3.38
−2.96


14 Yes −36.61

0.01
0.03
0.01

  4.59
6.26
−0.03

 4.86
0.56
3.43

 −1.26
6.23
3.95

 −4.00
−3.27
−2.56


16 Yes −45.30

0.02
0.03
0.01

  4.58
6.27
−0.05

 4.56
0.56
3.43

 −0.70
3.70
2.33

 −3.96
−3.22
−2.81


Table 1. Summary of the output of the algorithm for various
ratios R

ε . Recall we wish to maximise Equation 9. The last 5
columns are the vertex locations obtained.

5.3. Numerical simulations. The conditions in Assumption 3.8 are not the shar-
pest bounds, and other ratios of R and ε can also detect the correct graph struc-
ture. We present the results of a few different ratios, for the same 0.1-sample
P (Figure 5.9B) of the embedded graph (G,φG) ⊂ R3 (Figure 5.9A). There are
705 samples in P , and G has 5 vertices embedded as 1: (0, 0, 0), 2: (4.6, 6.24, 0)
3: (4.86, 0.51, 3.47), 4: (−1.32, 6.29, 4), and 5: (−4.23,−3.48,−3), and edges E =
{(1, 5), (1, 3), (1, 4), (2, 4), (2, 3)}.

Table 1 shows the results with varying choices of ratio R
ε . Comparing the log-

likelihood of the models obtained using R
ε = 8 (−2.3712314714356437) and R

ε = 12
(−2.783827546761547), we see that while we have shown that R ≥ 12ε is sufficient
to prove correctness of the algorithm, smaller ratios can also identify an isomorphic
graph structure, and result in a higher log-likelihood model. In practice, this sug-
gests that we can improve the process by first using R ≥ 12ε to obtain the correct
structure, and then decreasing the ratio to model the graph, stopping when we still
obtain the correct graph structure and maximise the log-likelihood.

6. Future directions. The algorithm presented in this paper focuses on recovering
and modelling an embedded graph (G,φG) given an ε-sample P . Stratified spaces,
however, are not restricted to consisting of 0- and 1-dimensional pieces, nor are
they restricted to being simplicial complexes. We can consider embeddings of CW
complexes, where a stratum is embedded as a semi-algebraic set.

While the algorithm in this paper does not naively extend to higher simplicial
complexes or CW complexes, it provides a foundation on which other algorithms
can be based, and hence moves towards learning general stratified spaces. The
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(A) Embedded graph |G|. (B) ε-sample P .

(C) R
ε
= 4: 2 vertex and 1 edge cluster. (D) Model using R

ε
= 4 in red.

(E) R
ε
= 8: 5 vertex and 5 edge clusters. (F) Model using R

ε
= 8 in red.

(G) R
ε
= 12: 5 vertex and 5 edge clusters. (H) Model using R

ε
= 12 in red.

Figure 5.9
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algorithm can be adapted to other cases and assumptions. For example, it can be
adapted to learn the abstract structure of a graph with non-linear edges and no
degree 2 vertices. In particular, to recover embedded CW complexes, we need to
remove the assumption that strata are embedded as convex hulls (linearity). Hence,
there are two distinct paths forward:

1. Develop an algorithm which identifies the abstract structure of simplicial com-
plexes with 2-dimensional simplices,

2. Explore methods for removing the linearity assumption (even for graphs).

Focusing on increasing the dimension of the cells in the simplicial complex, the
next step is to allow 2-simplicies and partition an ε-sample P into three parts P0, P1,
and P2. One approach is a peeling argument: first we determine the points in P2,
and then apply the current algorithm to P \P2 to obtain P1 and P0. Complications
with this include ensuring that points are not over-assigned to P \ P2, as this can
result in P \P2 not being suitable as input for the current algorithm. To appropri-
ately partition P , we hope to exploit the relationship between (R, ε)-local structure
and local homology. For graphs, we saw that the dimension 1 local homology at
a point x contains topological information, which corresponds to the number of
points in the intersection of the |G| with a ball of small radius r around x, and if
there are 2 points, their relative geometry providing more information. By general-
ising the (R, ε)-local structure appropriately, we hope to see a correspondence with
the information contained in higher homology groups and augment this with other
geometrical information.

To remove the linearity assumption, we need to address a long standing problem
in computational algebraic geometry: learning algebraic varieties from noisy sam-
ples. In [5], Breiding et al. develop an algorithm which is robust to machine error
but not sampling noise. The algorithm has also been found to fail when given large
data sets sampled from simple varieties. These issues need to be overcome before
we can remove the linearity assumption.
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