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CHAPTER 1

Introduction

It’s the job that’s never started as takes
longest to finish.

J.R.R. Tolkien
The Lord of the Rings

Algebraic geometry is a blending of linear algebra and differential geometry. Classical differen-
tial geometry studies the subsets of Rn arising as the intersections of zero sets of differentiable
functions f : Rn −→ R, whilst algebraic geometry is a generalisation of linear algebra in that
it studies the simultaneous zeroes of a set I of polynomial functions of arbitrary degree over a
field K. These comprise the algebraic subsets C = ζ(I) of Kn, we use ζ(I) to denote the set of
simultaneous zeroes of the polynomials in the set I . We call such C an algebraic variety.

As polynomial functions are analytic, studying their zeroes makes algebraic geometry a special-
isation of classical differential geometry. Polynomial functions can be defined for any field K,
so that the purely algebraic aspects apply to general fields. From an algebraic perspective, it is
more convenient to work over an algebraically closed field, so even when primary interest is in
zero sets of polynomials over R[x, y], called real plane curves, we work over C[x, y]. We can
recover the real plane curves by intersecting the complex plane curves with R2.

From the perspective of differentiable geometry, a topological space M is an n-dimensional
differentiable manifold if every point p has an open neighbourhood homeomorphic (there exists
a continuous function with continuous inverse) to Rn and can be assigned a well defined tangent
(vector) space, Tp(M), in such a way that it varies continuously with p. There are three ways in
which this can fail to be the case at a point p ∈ C: 1) there is no open neighbourhood around p
whose intersection with M is homeomorphic to Rn, 2) TpM is not defined, or 3) TpM does not
vary continuously with p.

Remark 1.0.1. It is possible for a point to fail all three conditions.

Example 1. Take f(x, y) = y2 − x3 − x2, and let C = ζ(y2 − x3 − x2). The point (0, 0) does
not have an open neighbourhood in the subspace topology which is homeomorphic to R1.

1
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FIGURE 1. y2 − x3 − x2 = 0

Example 2. Take f(x, y) = y2 − x3 and let C = ζ(f(x, y)). The point (0, 0) is a singularity as
a velocity vector of a curve on C reverses direction as it passes through (0, 0).
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y

FIGURE 2. y2 − x3 = 0

Points at which the curve is a differentiable manifold are the regular points. The points where
the curve fails to be a differentiable manifold are the singular points. We want a way of easily
determining the singular points p of a curve C. From the examples, we consider singularities of
a curve C = ζ(f(x, y)) as points where C has multiple tangents. This can occur in two ways:
firstly, the curve could have distinct tangents (Example 1), or it could have some tangents which
coincide. There are multiple tangents at (0, 0) if f(x, y) has no linear term. Recall that the
Taylor expansion of a polynomial f at (0, 0) is just f , and so we generalise when a point p is a
singularity by looking at the Taylor expansion of f around p.
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Definition 1.0.2. Take f ∈ C[x, y], and let C be the curve defined by f(x, y) in the complex
plane C2.

1. The multiplicity of a point p ∈ C is the order of the first non-vanishing term of the Taylor
expansion of f around P , denoted νp(C).

2. If νp(C) = 1, we call p a regular point of C.

3. If νp(C) > 1, then p is a singular point of C.

4. If the number of distinct tangents at p ∈ C is νp(C), and νp(C) > 1, then p is an ordinary
multiple point.

5. A curve C is non-singular if every point p of C is regular.

Remark 1.0.3. As C is the vanishing set of f , we start with νp(C) = 1, not νp(C) = 0.

Ideally, we want to study algebraic curves that are differentiable manifolds. As the examples
above show, this is not always the case, and so we seek a way of studying these curves. We
can do so by studying non-singular curves which are equivalent. That is, we want to resolve the
singularities.

It is important to note that we do not seek curves which are isomorphic to the singular curve C,
as these would still contain a singular point. Instead, we use the notion of birational equiva-
lence (Definition 3.0.1) to find and study appropriate non-singular curves C ′, as this allows us to
replace a singular point p in C with several points in C ′.

When studying the zeroes of a polynomial f , we can think of the zeroes as the points of inter-
section between the curve C = ζ(f) and the line y = 0, the x-axis. We know that the number of
roots of a polynomial f , counting multiplicity, is an invariant for polynomials of degree n, and
so we seek an analogous notion of multiplicity for the intersection of curves. The first step in
obtaining such an invariant for two curves, is ensuring that they always intersect. Take a pair of
parallel lines in C2: their intersection is empty, and so it seems that our search has failed at the
simplest of examples.

However, this is easily overcome: the intersection of two non-parallel lines `1 and `2 in C2

consists of a single point p. Yet, as we perturb `1 so that it becomes parallel to `2, we see that the
intersection point p drifts away to infinity.
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Thus, we introduce the notion of a point at infinity. This is equivalent to considering the lines
in the projectivisation CP2 of C2. Complex projective n-space, CPn, comprises the set of all
lines through the origin (one-dimensional vector subspaces) of Cn+1, with the quotient topology
induced from Cn+1 \ {(0, . . . , 0)} by the equivalence relation (x0, . . . xn) ∼ (u0, . . . , un) if and
only if there is a λ with ui = λxi for i = 0, . . . , n. We write [x0 : · · · : xn] for the equivalence
class of (x0, . . . xn), and call these homogeneous coordinates.

For each j ∈ {1, . . . , n}, the map

ϕj : Cn −→ CPn, (u1, . . . , un) 7−→ [x0 : · · · : xn]

with

xi =


ui+i for i < j

1 for i = j

ui for i > j

imbeds Cn homeomorphically as a subset of CPn.

So, even when the prime interest is in algebraic subsets of Cn, it is convenient to embed these
in, and to work with, complex projective n-space CPn. In our case, while we focus on complex
plane curves, algebraic varieties in C2 which are the zero sets of a polynomial f ∈ C[x, y], we
study them in CP2. For ease, examples and diagrams will be over R2.

There are several ways to resolve singularities. This thesis discusses resolving singularities by
repeatedly “blowing up” the singularity (Section 3.1). Before discussing blow ups, we discuss
intersections of curves, as we examine the intersection of two curves at a singularity p to show
that we obtain an non-singular curve in a finite number of blow ups. We discuss the use of
elimination theory to find common zeroes of two polynomials f(x, y) and g(x, y), and then
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introduce the intersection multiplicity of two curves at a point. In the final section, we discuss
a method of expressing solutions y of polynomial equation f(x, y) = 0 as a (fractional) power
series in x, by considering the Newton polygon of f(x, y). The fractional power series, Puiseux
expansion, and the Newton polygon are used to examine the blow ups of singular points.

Chapter 3 starts by defining the blowing up a point of a curve, and to ensure we obtain another
plane curve, we introduce σ-processes (Definition 3.1.6), before examining the behaviour of the
intersection of C and its auxiliary equations at the singularity under σ-processes. We also use
intersection multiplicity to define a standard resolution of a singularity (Definition 3.1.10). This
will allow us to show that we can resolve a singular point of any irreducible curve C through
a finite sequence of σ-processes (Theorem 3.2.19). If the singularity is sufficiently complex,
performing a sequence of blow ups becomes inefficient and arduous, so we discuss an efficient
algorithm (Section 3.3). This algorithm, however, has technical limitations which can be over-
come using transformations of CP2, called quadratic transformations. In Section 3.4 we extend
σ-processes to resolve several singular points of an irreducible curveC, Corollary 3.4.29. In Sec-
tion 3.5, we remove the irreducibility assumption, extending our results to reducible curves with
Theorem 3.5.31. In Chapter 4 we examine two methods of representing the standard resolution
of a singularity, namely the multiplicity sequence and the resolution graph. We first introduce
the multiplicity sequence (Section 4.1), and then resolution graph (Section 4.2). In the last sec-
tion, we show that the information continued in the Puiseux characteristic exponents (Definition
2.4.20), multiplicity sequence, and resolution graph is equivalent.



CHAPTER 2

Intersections of Curves

Lines, the straightest of curves! Order
yours today!

Ross Ogilvie

In order to understand the effect of σ-processes on a singularity, we examine how they affect
curves which intersect at the singularity. This means we need to understand how two curves
intersect at a point.

Finding points of intersections of two curves C = ζ(f(x, y)) andD = ζ(g(x, y)) is equivalent to
finding common zeroes of f(x, y) and g(x, y). We can find common zeroes of f(x, y) and g(x, y)

by eliminating powers of y, and obtaining an equationR(x) in x. By finding the roots ofR(x), we
obtain candidate x-values of common zeroes of f(x, y) and g(x, y). The process of eliminating
powers of y can be represented by a matrix called the Sylvester matrix (Definition 2.1.1). We
show that if (α, β) is a common zero of f and g, then x = α is a root of the determinant, Rf,g(x),
of the Sylvester matrix. This provides us with an initial method for interpreting the multiplicity
of (α, β) as a common zero of f and g through the multiplicity of x = α as a root of Rf,g(x).
There are however, issues with this interpretation, and so we introduce a geometric description
of the intersection of two curves, called the intersection number (Definition 2.2.7), which avoids
these concerns. We the show that the intersection number and intersection multiplicity are equal,
and so the intersection multiplicity is also well defined.

Having seen a geometric and an algebraic way of interpreting the multiplicity of points of inter-
section, we show that there is also a geometric way of looking at the multiplicity of a point on a
curve, and show that it agrees with our original definition.

Finally, we examine how to express a solution y of f(x, y) = 0 in terms of x, as this will allow us
to compute the common zeroes of two polynomials, or the intersection points of two curves. We
introduce Newton polygons as a tool for decomposition the polynomial f(x, y) into components
for which we know how to find an expression of y in terms of x. Newton polygons will also play
an important role in Chapter 3, when we show that we can resolve a singularity in a finite number
of steps.

6
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2.1. Finding Points of Intersection

One way of finding common zeroes of two polynomials f(x, y) and g(x, y), is to find an equation
for the x-values of the common zeroes, by eliminating powers of y. We consider polynomials in
C[x, y] as elements of C[x][y], that is, polynomials in y with coefficients in C[x].

Example 3. We seek the common zeroes of polynomials f and g of degrees 3 and 1 in y respec-
tively.

Take

f(x, y) = a0(x) + a1(x)y + a2(x)y2 + a3(x)y3 = 0(21)

g(x, y) = b0(x) + b1(x)y = 0(22)

We subtract y2a3(x)g(x, y) from b1(x)f(x, y) to eliminate y3:

(23) b1(x)a0(x) + b1(x)a1(x)y + (b1(x)a2(x)− a3(x)b0(x))y2 = 0

We now eliminate y2 from (23), by subtracting (b1(x)a2(x)−a3(x)b0(x))y times (22) from b1(x)

times (23):

(24) b1(x)b1(x)a0(x) + (b1(x)b1(x)a1(x)− b0(x)b1(x)a2(x)− b0(x)a3(x)b0(x))y = 0

Next, we eliminate y from (24) by subtracting (b1(x)b1(x)a1(x)−b0(x)b1(x)a2(x)−b0(x)a3(x)b0(x))

times (22) from b1(x) times (24)

(25)
b1(x)b1(x)b1(x)a0(x)−b0(x)b1(x)b1(x)a1(x)+b0(x)b0(x)b1(x)a2(x)+b0(x)b0(x)a3(x)b0(x) = 0

Thus, a necessary condition for (x, y) to be a common zero of f and g is that x be a zero of
(25). This is equivalent to x being such that the following system of simultaneous equations in
the unknowns 1, y, y2, y3 has non-trivial solutions:

f(x, y) = a0 + a1y + a2y
2 + a3y

3 = 0
g(x, y) = b0 + b1y + 0 + 0 = 0
yg(x, y) = 0 + b0y + b1y

2 + 0 = 0
y2g(x, y) = 0 + 0 + b0y

2 + b1y
3 = 0
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This system has non-trivial solutions when the determinant of the coordinate matrix
a0(x) a1(x) a2(x) a3(x)

b0(x) b1(x) 0 0

0 b0(x) b1(x) 0

0 0 b0(x) b1(x)


is 0.

Example 4. Take

f(x, y) = a0(x) + a1(x) + a2(x)y2 + a3(x)y3 + a4(x)y4 + a5(x)y5 = 0(26)

g(x, y) = b0(x) + b1(x)y + b2(x)y2 + b3(x)y3 = 0(27)

of degrees 5 and 3 respectively.

We seek a necessary condition on x for (x, y) to be a common zero of f and g. That is, the values
of x such that there are non-trivial solutions to the system of equations in 1, y, y2, y3, y4, y5:

f(x, y) = a0 + a1y + a2y
2 + a3y

3 +a4y
4 + a5y

5 = 0
g(x, y) = b0 + b1y + b2y

2 + b3y
3 + 0 + 0 = 0

yg(x, y) = 0 + b0y + b1y
2 + b2y

3 + b3y
4 + 0 = 0

y2g(x, y) = 0 + 0 + b0y
2 + b1y

3 + b2y
4 + b3y

5 = 0

This is system of four equations in six unknowns. To eliminate powers of y, we introduced
additional polynomials whose common zeroes with f and g are the common zeroes of f and g.
The additional polynomials are products of g(x, y) and powers of y. We can also multiply f(x, y)

by powers of y, introducing additional powers of y to be eliminated. For example, yf(x, y)

introduces a y6 term, which we can eliminate using y3g(x, y).

While we have introduced a new power of y, we also obtain two new equations, yielding a
system of six equations in seven unknowns. Repeating this with y2f(x, y) and y4g(x, y) results
in a system of eight equations in eight unknowns:

a0 + a1y + a2y
2 + a3y

3 +a4y
4 + a5y

5 + 0 + 0 = f(x, y) = 0
0 + a0y + a1y

2 + a2y
3 + a3y

4 +a4y
5 + a5y

6 + 0 = yf(x, y) = 0
0 + 0 + a0y

2 + a1y
3 + a2y

4 + a3y
5 +a4y

6 + a5y
7 = y2f(x, y) = 0

b0 + b1y + b2y
2 + b3y

3 + 0 + 0 + 0 + 0 = g(x, y) = 0
0 + b0y + b1y

2 + b2y
3 + b3y

4 + 0 + 0 + 0 = yg(x, y) = 0
0 + 0 + b0y

2 + b1y
3 + b2y

4 + b3y
5 + 0 + 0 = y2g(x, y) = 0

0 + 0 + 0 + b0y
3 + b1y

4 + b2y
5 + b3y

6 + 0 = y3g(x, y) = 0
0 + 0 + 0 + 0 + b0y

4 + b1y
5 + b2y

6 + b3y
7 = y4g(x, y) = 0
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This system has non-trivial solutions when the determinant of



a0(x) a1(x) a2(x) a3(x) a4(x) a5(x) 0 0

0 a0(x) a1(x) a2(x) a3(x) a4(x) a5(x) 0

0 0 a0(x) a1(x) 2(x) a3(x) a4(x) a5(x)

b0(x) b1(x) b2(x) b3(x) 0 0 0 0

0 b0(x) b1(x) b2(x) b3(x) 0 0 0

0 0 b0(x) b1(x) b2(x) b3(x) 0 0

0 0 0 b0(x) b1(x) b2(x) b3(x) 0

0 0 0 0 b0(x) b1(x) b2(x) b3(x)


is 0. This determinant is a polynomial in x, and so we have a necessary condition on the values
of x: the x-values of common zeroes must be roots of the determinant of the coefficient matrix.

Consequently, we make the following definition.

Definition 2.1.1. Given two polynomials f, g ∈ C[x, y]

f(x, y) =
n∑
i=0

ai(x)yi

g(x, y) =
m∑
j=0

bj(x)yj

We call the (m+ n)× (m+ n) matrix



a0 a1 . . . . . . . . . an 0 0 0 0

0 a0 a1 . . . . . . . . . an 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 a0 a1 . . . . . . an−1 an 0

0 0 0 0 a0 a1 . . . . . . am−1 am
b0 b1 . . . . . . . . . bm−1 bm 0 0 0

0 b0 b1 . . . . . . . . . bm−1 bm 0 0

0 0 . . . . . . . . . . . . . . . . . .

0 0 b0 b1 . . . . . . . . . bm−1 bm 0

0 0 0 b0 b1 . . . . . . . . . bm−1 bm


the Sylvester Matrix of f and g, and its determinant the resultant of f and g, denoted Rf,g(x).

Example 5. Take the polynomials f(x, y) = x2 − y and g(x, y) = −x2 − y. Their resultant is
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Rf,g = det

[
x2 −1

−x2 −1

]
= −2x2 = −2(x− 0)(x− 0)

So the common zero is (0, 0).

Now, take h(x, y) = −x+ y, we consider the common zeroes of h and f .

Their resultant is

Rf,h = det

[
x2 −1

−x +1

]
= x2 + x = x(x− 1)

And the common zeroes are (0, 0) and (1, 1).

Remark 2.1.2. If we were to construct a notion of a common zero (α, β) of two polynomials
occurring twice, then supposing we have an equation which gives us the x-values, it should give
us x = α twice. Indeed we have such an equation, namely the resultant. So we could propose to
interpret the multiplicity of the common zero (α, β) of f and g as the multiplicity of α as a zero
of Rf,g(x) [1].

There are two issues with this proposal. Firstly, we could have eliminated powers of x instead
of y from the polynomials, obtaining a resultant in y, Rf,g(y). Given a common zero (x, y),
the multiplicity of y as a root of Rf,g(y) should correspond to the multiplicity of x as a root
of Rf,g(x). Secondly, given two common zeroes with the same x-coordinate α, but different
y-coordinates β1 and β2, the resultant will not distinguish the two. The multiplicity of x = α as
a root of Rf,g(x) will be the sum of the multiplicities of (α, β1) and (α, β2).

Thus, to be able to have a sensible definition of the multiplicity of common zeroes, we need to
find a way which is independent of choices of coordinates.

Returning to considerations of curves, we have found a way of describing the intersection of two
curves C = ζ(f(x, y)) and D = ζ(g(x, y)) at a point (α, β) through the multiplicity of the root
x = α of Rf,g(x), which appears dependent on choice of coordinates.

2.2. Intersection Multiplicity

We begin our search for a the notion of the intersection multiplicity of two curves C and D at a
point p, independent of choice of coordinates. We find a way around these issues by looking at
the multiplicity of roots of a polynomial from a new perspective [6].1

1I would like to thank Professor John Rice for the helpful conversations about intersection multiplicity, and his
unpublished notes.
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Given a set A = {a1, . . . , ak}, we consider the evaluation map from C[x] to Ck:

EvalA : C[x] −→ Ck

q(x) 7−→

q(a1)

. . .

q(ak)

 .
Remark 2.2.3. We can consider Ck in this role as the space of functions on the set A, and the
dimension of Ck is equal to the number of points in A.

We will see that EvalA is a surjection. The kernel of EvalA is the set of polynomials f ∈ C[x]

such that f(ai) = 0 for each ai ∈ A.

If f(ai) = 0, then (x− ai) divides f(x), so given f(x) ∈ ker(EvalA), (x− ai) divides f(x) for
1 ≤ i ≤ k. Thus

p(x) =
k∏
i=1

(x− ai)

also divides f(x), and p(x) generates the kernel of EvalA.

Hence, we have an isomorphism between Ck and

C[x]
/
p(x)C[x],

and we can think of this quotient as the space of polynomials with domain A. By Remark 2.2.3,
the dimension of the quotient ring is equal to the cardinality of A.

We now impose this train of thought to consider any quotient of C[x] as a space of functions on
a domain whose cardinality is the dimension of the quotient.

Example 6. Take p(x) = xn. Then the space of functions we are considering consists of poly-
nomials f(x) ∈ C[x] truncated from xn onwards. The root of xn is 0, but the dimension of the
quotient space is n.

We can reconcile this by thinking of the quotient by xn as the restriction of polynomials to a
domain which contains n copies of 0, and we think of these as being ‘infinitely close’. We call
this domain the n − 1 ‘infinitesimal neighbourhood’ of 0. Thus, the dimension of the quotient
counts the number of points in this infinitesimal neighbourhood, namely 0 repeated n times.

In the same manner, we consider any quotient of C[x] by the polynomial (x− ai)ni as the space
of polynomials restricted a domain with ni copies of ai, which we think of as an ‘infinitesimal
neighbourhood’ of ai. So given a general polynomial
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p(x) =
k∏
i=1

(x− ai)ni ,

we want to think of
C[x]

/
p(x)C[x]

as the restriction of polynomials to the some ‘infinitesimal neighbourhoods’ of its roots.

Note, that for each i we have the canonical homomorphism

ηi : C[x] −→ C[x]
/

(x− ai)niC[x],

which restricts polynomials to the ni − 1 infinitesimal neighbourhood of ai.

We also have the homomorphism

η̃i : C[x]
/
p(x)C[x] −→

C[x]
/

(x− ai)niC[x],

which we can also think of restriction polynomials to the ni − 1 infinitesimal neighbourhood of
ai. This η̃i is just a further restricting elements of

C[x]
/
p(x)C[x].

We can compose the canonical projection map to

C[x]
/
p(x)C[x]

with η̃i:

ξ : C[x] −→ C[x]
/
p(x)C[x] −→

C[x]
/

(x− ai)niC[x],

Remark 2.2.4. The homomorphisms ηi and ξ are equal.

This allows us to partition
C[x]

/
p(x)C[x]

into polynomials on the ni − 1 infinitesimal neighbourhoods of the ai. In fact, we can construct
a homomorphism

A : C[x] −→
i=k⊕
i=1

C[x]
/

(x− ai)niC[x]
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from the ηi.

The kernel ofA consists of polynomials f(x) which are divisible by each (x−ai)ni . As (x−ai)ni

and (x− aj)nj are relatively prime for i 6= j, and their product divides f(x), p(x) divides f(x),
and ker(EvalA = p(x)C[x].

Further, (x− ai)ni and
∏

j 6=i1(x− aj)nj are relatively prime, so there are polynomials ri(x) and
si(x) such that

ri(x)(x− ai)ni + si(x)
∏
j 6=i1

(x− aj)nj = 1.

Thus, given any element of
i=k⊕
i=1

C[x]
/

(x− ai)niC[x]

we can construct a polynomial whose image is this element.

Remark 2.2.5. In the case ni = 1 for each i, we have shown that EvalA is a surjection.

Remark 2.2.6. This is the Chinese Remainder Theorem.

Thus, we have

C[x]
/
p(x)C[x]

∼=
i=k⊕
i=1

C[x]
/

(x− ai)niC[x],

and we think of
C[x]

/
p(x)C[x]

as the restriction of polynomials to the ni − 1 infinitesimal neighbourhoods of the ai.

We now seek an analogous interpretation of quotients of C[x, y], and in doing so develop a notion
of multiplicity for the common zeroes of two polynomials f(x, y) and g(x, y) in C[x, y]. That is,
we want a way of thinking of

C[x, y]
/
JC[x, y]

as the restriction of polynomials to some infinitesimal neighbourhoods of points in C2. First, we
must find ideals J of C[x, y], for which we can interpret

C[x, y]
/
J

as the restriction of polynomials to a point.

Given a point (α, β) ∈ C[x, y], the ideal of polynomials that are zero at (α, β) is the ideal
〈x− α, y − β〉, which is a finitely generated maximal ideal of C[x, y]. So, we can think of

C[x, y]
/
JC[x, y]
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as the restriction of polynomials to the point (α, β).

Now consider ideals I generated by powers of (x − α) and (y − β). These are contained in
J = 〈x− α, y − β〉, and are also finitely generated. By the Hilbert Nullstellensatz (Section 1.7
[2]), each such ideal I = 〈(x− α)d, (y − β)d〉 contains a power of J : there is some k such that
Jk ≤ I . Hence, we have a map of quotients

C[x, y]
/
JkC[x, y] −→

C[x, y]
/
IC[x, y].

As Jd is finitely generated, the dimension of

C[x, y]
/
JdC[x, y]

is finite, and thus so is the dimension of

C[x, y]
/
IC[x, y].

We consider the quotient by I to be the restriction of polynomials to a set AI , such that number
of points in the AI is the dimension of this quotient.

For
C[x, y]

/
JkC[x, y],

we think of AJ as consisting of k copies of (α, β).

Recall we took I = 〈(x− α)d, (y − β)d〉, and so by our train of thought, AI consists of d points
with x-coordinate infinitely near α, and d points with y-coordinate infinitely near β. That is, it
is the product of the d − 1 infinitesimal neighbourhood of x = α and the d − 1 infinitesimal
neighbourhood of y = β, which we think of the d − 1 infinitesimal neighbourhood of (α, β): it
consists of d copies of (α, β).

Hence, we take the dimension of
C[x, y]

/
IC[x, y]

to be the multiplicity of the common zero (α, β) of (x− α)d and (y − β)d.

Generalising, we take two polynomials f(x, y) and g(x, y) with no common component, so the
set of common zeroes pi is finite. Now, consider the maximal ideal Ji at each pi. The intersection
of the ideals Ji is the set of polynomials which vanish at each pi, and so is contained in the ideal
〈f, g〉.

Now, each Ji is a maximal ideal of C[x, y] and so Ji and Jl are relatively prime for i 6= l. Thus,
the intersection of the Ji is equal to their product.
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By the Hilbert Nullstellensatz again, there is a d such that(∏
Ji

)d
≤ 〈f, g〉.

We will use this to develop a partition of 〈f, g〉 amongst the common zeroes pi. After which we
think of

C[x, y]
/
〈f, g〉C[x, y]

as the restriction of polynomials to infinitesimal neighbourhoods of each pi.

Consider the ideal Ii := 〈f, g〉+Jdi , both 〈f, g〉 and Jd are contained in the maximal ideal J , and
so I is also contained in J . But as Ii contains Jdi , a power of a maximal ideal, Ii is not contained
in any other maximal ideal of C[x, y]. Thus, we can use the ideals Ii to partition 〈f, g〉 according
to the common zeroes pi of f and g, as desired.

We have the map of quotients

C[x, y]
/
Jdi C[x, y] −→

C[x, y]
/
IiC[x, y],

and so by the same argument, the dimension of

C[x, y]
/
IiC[x, y]

is finite. Hence, we take this dimension as the multiplicity of pi as a common zero of f(x, y) and
g(x, y).

Definition 2.2.7. Given two polynomials f(x, y), g(x, y) ∈ C[x, y], the multiplicity of a common
root (αiβi) is the dimension of the quotient

C[x, y]
/
Ii

Recall that the common zeroes of f(x, y) and g(x, y) are the intersection points of the curves
C = ζ(f(x, y)) and D = ζ(g(x, y)).

So, given two curves C = ζ(f) and D = ζ(g) in C2 with f, g ∈ C[x, y], the intersection
multiplicity νpi(C,D) of C and D at (αi, βi) is the multiplicity of (αi, βi) as a common zero of
f and g.

Remark 2.2.8. If f and g arise from homogenous polynomials F and G, of degree n and m
respectively, by setting z = 1, and no intersection points occur when z = 0, then

dimC

(C[x, y]
/
〈f, g〉C[x, y]

)
= nm,
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and the left hand side is equal to the sum of the multiplicities of the points of intersection. This
shows that when considered in CP2, the sum of the intersection multiplicities is equal to nm, the
product of the degrees of f and g. This is a classical result, called Bezout’s Theorem.

Remark 2.2.9. With the concept of localisation at a prime,

C[x, y]
/
Ji

is the localisation of the quotient by 〈f, g〉 at the common zero pi,(C[x, y]
/
〈f, g〉C[x, y]

)
(αi,βi)

= C[x, y](αi,βi)
/
〈f, g〉C[x, y](αi,βi)

.

Thus, the dimension of
C[x, y](αi,βi)

/
〈f, g〉C[x, y](αi,βi)

is the multiplicity of pi as a common zero of f and g. For those unfamiliar with localisation, we
introduce localisation of rings, and show that this holds.

We first define the localisation of the ring R and a multiplicative subset S, a subset of R which
is closed under multiplication and contains the identity element of R [5].

Definition 2.2.10. Let R a commutative ring, and S a multiplicative subset of R. The ring

S−1R := {s−1r | s ∈ S, r ∈ R}

is the localisation of R at S.

For our specific case, we are localising at a point p, which is the same as considering the rational
functions defined at p, which form a ring [2]:

Definition 2.2.11. Given a curve C ⊂ C, and p ∈ C, the ring

Op(C) =

{
f

g

∣∣∣ f, g ∈ C[x], g(p) 6= 0

}
is called the local ring of C at p. And the ideal

mp(C) = {f ∈ Op(C) | f(p) = 0}

is the unique maximal ideal of Op, called the maximal ideal of C at p.

We can now state the Lemma which shows that(C[x, y]
/
〈f, g〉C[x, y]

)
(αi,βi)

= C[x, y](αi,βi)
/
〈f, g〉C[x, y](αi,βi)

,

and thus the intersection multiplicity of C and D at the point p is equal to the dimension of the
localisation at p of quotient of C[x, y] by the ideal 〈f, g〉.
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Lemma 2.2.12. Given a polynomial p(x) =
∏j

i=1(x− ai)ni the localisation of the C[x] module

C[x]
/
p(x)C[x]

at x = ai is
C[x]

/
(x− ai)niC[x]

and is zero if we are localising at a point which is not a root of the polynomial.

Proof. Consider the short exact sequence

0 −→ p(x)C[x] −→ C[x] −→ C[x]
/
p(x)C[x] −→ 0

Localisation at a preserves short exact sequences, and thus

0 −→ p(x)C[x]a −→ C[x]a −→
(C[x]

/
p(x)C[x]

)
a
−→ 0

is also a short exact sequence.

Consider p(x)C[x]a: it consists of elements fp
g

with g(a) 6= 0. If a is a root of p(x) with
multiplicity n, then p(x)C[x]a is the space of polynomials which are zero on a, and thus(C[x]

/
p(x)C[x]

)
a

= C[x]
/

(x− a)nC[x].

If a is not a root of p(x), we can take g(x) = p(x), and so p(x)C[x]a = C[x], and hence(C[x]
/
p(x)C[x]

)
a

is zero. �

We now show that Definition 2.2.7 is equal to the notion of intersection multiplicity we con-
sidered in Remark 2.1.2. That is, we are seeking a geometric interpretation of the roots of the
resultant Rf,g(x).

To have such an interpretation, we construct a C[x] module homomorphism related to the resul-
tant. Let Cd[x, y] be the vector space of polynomials in x and y of degree less than d in y with
the basis {1, y, y2, . . . , yd}. The Sylvester matrix of f and g from Definition 2.1.1 represents a
C[x] module homomorphism

χf,g : Cm[x, y]× Cn[x, y] −→ Cm+n[x, y]

(q, p) 7−→ qf + pg
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where f =
∑n

i=0 ai(x)yi has degree n and g =
∑m

j=0 bj(x)yi has degree m in y, with respect to
the chosen basis.

This homomorphism is given as follows for f degree 5 and g degree 3:

χf,g(q, p) =

q0(x)

q1(x)

q2(x)

p0(x)

p1(x)

p2(x)

p3(x)

p4(x)



T 

a0(x) a1(x) a2(x) a3(x) a4(x) a5(x) 0 0

0 a0(x) a1(x) a2(x) a3(x) a4(x) a5(x) 0

0 0 a0(x) a1(x) 2(x) a3(x) a4(x) a5(x)

b0(x) b1(x) b2(x) b3(x) 0 0 0 0

0 b0(x) b1(x) b2(x) b3(x) 0 0 0

0 0 b0(x) b1(x) b2(x) b3(x) 0 0

0 0 0 b0(x) b1(x) b2(x) b3(x) 0

0 0 0 0 b0(x) b1(x) b2(x) b3(x)





1

y

y2

y3

y4

y5

y6

y7


= qf + pg

Proposition 2.2.13. The image of the C[x] module homomorphism χf,g is

〈f, g〉 ∩ Cm+n[x, y]

Proof. Clearly, im(χ) ⊆ 〈f, g〉, and thus im(χ) ⊂ 〈f, g〉 ∩ Cm+n[x, y].

To see 〈f, g〉 ∩Cm+n[x, y] ⊆ im(χ), take q ∈ Cm[x, y] and p ∈ Cn[x, y], then deg(qf) ≤ m+ n

and deg(pg) ≤ n+m. Thus deg(qf+pg) ≤ m+n and qf+pg ∈ Cm+n[x, y], but qf+pg ∈ 〈f, g〉
as well. Hence

χ(q, p) = qf + pg ∈ Cm+n[x, y] ∩ 〈f, g〉,

and im(χf,g) = 〈f, g〉 ∩ Cm+n[x, y]. �

We will now investigate the relationship between the intersection multiplicity and intersection
number of two curves

C = ζ(f)

and
C ′ = ζ(D′)

without a common component at a point p = (α, β). To simplify matters, we will assume that
the leading coefficients an of f and bm of g are relatively prime.

We begin by showing that
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(28) C[x, y]
/
〈f, g〉

∼= Cn+m[x, y]
/
〈f, g〉 ∩ Cn+m[x, y].

To do so, we show that for any d > m+ n− 1

Cd[x, y]
/
〈f, g〉 ∩ Cd[x, y]

∼= Cd−1[x, y]
/
〈f, g〉 ∩ Cd−1[x, y].

As the leading coefficients of f and g are relatively prime, there are polynomials α(x) and β(x)

such that

(29) α(x)an(x) + β(x)bm(x) = 1

Hence

α(x)f(x, y)yd−n + β(x)g(x, y)yd−m

=
n∑
i=0

α(x)ai(x)yi+d−n +
m∑
i=1

β(x)bi(x)yi+d−m

= (α(x)an(x) + β(x)bm(x)) yd +
n−1∑
i=0

α(x)ai(x)yi+d−n +
m−1∑
i=1

β(x)bi(x)yi+d−m

=yd +
n−1∑
i=0

α(x)ai(x)yi+d−n +
m−1∑
i=1

β(x)bi(x)yi+d−m

Next, we define

h(x, y) :=
n−1∑
i=0

α(x)ai(x)yi+d−n +
m−1∑
i=1

β(x)bi(x)yi+d−m

and then given d > m+ n− 1, there is some h(x, y) ∈ Cd[x, y] such that

α(x)f(x, y)yd−n + β(x)g(x, y)yd−m = yd + h(x, y)

Hence,

Cd[x, y]
/
〈f, g〉 ∩ Cd[x, y] = Cd−1[x, y]

/
〈f, g〉 ∩ Cd−1[x, y]

and
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C[x, y]
/
〈f, g〉 = Cn+m[x, y]

/
〈f, g〉 ∩ Cn+m[x, y]

So we have the following corollary:

Corollary 2.2.14. As a C[x] module, the quotient ring C[x, y]
/
〈f, g〉 is isomorphic to the cok-

ernel of the map χf,g defined by the Sylvester matrix.

Recall
cokernel(χf,g) = codom(χf,g)

/
im(χf,g)

Recall the Smith Normal Form of a matrix: as C[x] is a principal ideal domain, for any matrix
A over C[x] we can find invertible matrices S and T with determinant 1, such that SAT is
diagonal.

Viewing A, S, T and SAT as module homomorphisms, S and T are isomorphisms, and hence
they induce an isomorphism between the cokernel of A and the cokernel of SAT . If the diagonal
entries of SAT are q1(x), . . . , qd(x), then the cokernel of SAT is

C[x]
/
qi(x)C[x]⊕ . . .⊕

C[x]
/
qd(x)C[x]

and hence

dim(cokernel(SAT )) =
d∑
i=1

deg(qi)

which is also the degree of the product of the qi’s, or the degree determinant of SAT . As

det(S) = det(T ) = 1

this is equal to the determinant of A. Thus the dimension of the cokernel of A is equal to the
degree of det(A).

Applying the above to the Sylvester matrix, we know there are polynomials qi such that

Rf,g(x) =
m+n∏
i=1

qi(x)

where n is the y degree of f and m is the y degree of g and then

C[x, y]
/
〈f, g〉

∼= coker(χf,g) ∼=
m+n⊕
i=1

C[x, y]
/
qni
i C[x],
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Thus the sum of the multiplicities of the common zeroes of f and g is equal to the degree of the
resultant.

We can also consider C[x, y]
/
〈f, g〉 as a C[x] module, and localise at a point. The multiplicity

of each root a of the resultant is equal to the sum of the multiplicities of the intersection points
of f and g whose x coordinate is a.

Recall that as a C[x] module, C[x, y]
/
〈f, g〉 is the direct sum of modules C[x, y]

/
qiC[x], and

so the localisation of C[x, y]
/
〈f, g〉 at a point x = a is the direct sum of the localisations of

C[x, y]
/
qiC[x] at x = a.

Corollary 2.2.15. With the notation from Lemma 2.2.12, the dimension of the localisation of
C[x] module

C[x]
/
p(x)C[x]

at x = a is the multiplicity of a as a root of p(x).

Applying the above to the Sylvester matrix and χf,g we have that the dimension of the localisation

of C[x, y]
/
〈f, g〉 (as a C[x] module) at the point a is the multiplicity of a = (a1, a2) as a root of

Rf,g(x), if there is only one common zero of f and g with x = a1.

The above discussion leads to the following Corollary:

Corollary 2.2.16. The dimension of
(C[x, y]

/
〈f, g〉

)
(a,b)

is equal to the multiplicity of (a, b)

as a root of Rf,g(x), where our coordinates are such that distinct common zeroes have distinct x
and y values.

Example 7. Take the curves C = ζ(f(x, y) = x2 − y) and D = ζ(g(x, y) = −x2 − y). Recall
that

Rf,g = −2x2

As 0 is a double root of −2x2, the intersection multiplicity of f and g at (0, 0) is 2.

Now, consider ideals generated 〈f, g〉 and 〈x, y〉. Then

〈f, g〉+ 〈x, y〉 ⊆ 〈f, g〉 ⊆ 〈f, g〉+ 〈x, y〉2 =: J

Next, we find
(C[x, y]

/
J

)
(0,0)

and determine its dimension.
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Note C[x, y]
/
J is the set of equivalence classes of polynomials with q ≡ p if and only if p− q is

in J . This has dimension 2 as a vector space over C with basis given by the equivalence classes
[1] and [x].

The localisation is(C[x, y]
/
J

)
(0,0)

=

{
[p]

[q]
| [p], [q] ∈ C[x, y]

/
J [q], 6= [0]

}
which has dimension 2.

Having seen that the intersection number and intersection multiplicity are equal, we discuss the
generic type of intersection between two curves: when νp(C,D) = 1.

Definition 2.2.17. Two irreducible curves C and D in C2 intersect transversally at p if

νp(C,D) = 1.

x

y

FIGURE 4. Transversal intersection

Two curves C and D intersect transversally at a point p if and only if the following three condi-
tions are satisfied:

(a) p must be a regular point of f

(b) p must be a regular point of g

(c) the tangent spaces of f and g at p must be distinct

This means that C and C ′ intersect transversally at p if and only if the tangent space of C2 at p is
the direct sum of the tangent spaces of C and C ′ at p.
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2.3. Revisiting the Multiplicity of a Point

Having seen that we can describe the intersection of two curves at a point independent of choice
of coordinates, we briefly return the multiplicity of a curve C at a point p, and provide an anal-
ogous coordinate independent definition. For this section, we consider an irreducible curve in
C2.

Following [2], we see that Definition 1.0.2 is equivalent to considering the dimension of the
quotient of large enough powers of the maximal ideal of the variety at the point p (Definition
2.2.11).

As discussed, the local ring is the set of rational functions on the variety C which are defined at
p, and mp(C) is the set of rational functions on C which are 0 at p. The connection between the
intersection multiplicity and intersection number of two curves C and D at a point p was that the
degree of p as a root of the resultant is equal to the dimension of the localisation of the quotient
ring C[x, y]

/
〈f, g〉, where C = ζ(f) and D = ζ(g). The corresponding relationship for the

multiplicity of C at p is the following:

Theorem 2.3.18. Let p be a point on the irreducible curve C = ζ(f), then for n� 0

νp(C) = dimC

(
mp(C)n

/
mp(C)n+1

)
Proof. Consider the following exact sequence:

(210) 0 −→ mp(C)n
/
mp(C)n+1 −→ Op(C)

/
mp(C)n+1 −→ Op(C)

/
mp(C)n −→ 0

so it is sufficient to show

dimC

(Op(C)
/
mp(C)n

)
= nνp(C) + s

with s some constant and n ≥ νp(C). Without loss of generality, we may assume that p = (0, 0),
and hence

mp(C) = 〈x, y〉

Note that ζ(〈x, y〉n) = {(0, 0)}, and thus

C[x, y]
/
〈mp(C)n, f〉Op(C2)

∼= Op(C)
/
〈x, y〉nOp(C)

∼= Op(C)
/
mp(C)n
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We have reduced the situation to calculating dimC

(C[x, y]
/
〈mp(C)n, f〉

)
. We can construct

another exact sequence:

0 −→ C[x, y]
/
mp(C)

n−νp(C) −→ C[x, y]
/
mp(C)n −→

C[x, y]
/
〈mp(C)n, C〉 −→ 0

And thus for all n ≥ νp(C),

dimC

(C[x, y]
/
〈mp(C)n, C〉

)
= nνp(C)− νp(C)(νp(C)− 2)

2

Returning to (210), we have

dimC

(
mp(C)n

/
mp(C)n+1

)
= dimC

(Op(C)
/
mp(C)n+1

)
− dimC

(Op(C)
/
mp(C)n

)
=

(n+ 1)νp(C)− νp(C)(νp(C)− 2)

2
− nνp(C)− νp(C)(νp(C)− 2)

2
= νp(C)

Hence
dimC

(
mp(C)n

/
mp(C)n+1

)
= νp(C)

�

2.4. Puiseux Expansions

In the Section 2.1, we eliminated powers of y from two simultaneous equations: we sought an
equation which x-values of common zeroes must satisfy. The zeroes of the resultant of f(x, y)

and g(x, y) were candidate x-values for common zeroes. All that remains is find corresponding
y-values so that (x, y) is a common zero of f(x, y) and g(x, y), which we do by solving a poly-
nomial in y. Doing so, however, is not trivial: given polynomials of degree greater than five in y,
there is no general method for finding the roots. If however, f(x, y) = 0 and g(x, y) = 0 satisfy
the conditions of the Holomorphic Implicit Function Theorem, then there exists an expression of
y as a convergent power series in x. Unfortunately, it is not true that either f and g will satisfy
these conditions in general: consider the polynomial f(x, y) = yp − xq, with q > p, given an x,
yp = xq, that is y = x

q
p , and so to find the corresponding y, we must allow fractional powers of

x. To obtain such a fractional power series, a Puiseux expansion of a polynomial f , we introduce
the Newton polygon of f to decompose f into components for which we can find a factional
power series expression for y in terms of x. We use the Newton polygon and certain exponents
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in the Puiseux expansion in Section 3.1 to show that we a finite sequence of σ-processes will
resolve a singularity. We follow the discussion in [1].

We generalise this by finding polynomials have solutions of the form

y = txµ

with t ∈ C and µ = q
p
∈ Q≥0. These are polynomials f(x, y) such that

f(x, txµ) =
∑

aijt
jxi+jµ = 0.

Recall a homogenous polynomial is a polynomial f(x1, . . . , xn) such that

f(tx1, . . . , txn) = tnf(x1, . . . , xn),

and a quasi-homogenous polynomial is one such that there are weights ωi with

f(tωix1, . . . , t
ωnxn) = tnf(x1, . . . , xn).

If f is quasi-homogeneous, then

f(x, txµ) =
∑

i+µj=ν

aijx
itjxjµ

=
∑

i+µj=ν

aijx
i+jµtj

= xν
∑

aijt
j

= xνg(t)

and so letting t0 be a zero of g(t), y = t0x
µ is a solution of f(x, y) = 0. We can assume

that t0 6= 0 as long as g(t) 6= ctm, which occurs when f(x, y) consists of at least two distinct
monomials.

We can also interpret the assumption that f(x, y) is quasi-homogeneous geometrically. Note that
each monomial xiyj corresponds to an element (i, j) of the lattice N2, and so given a general
polynomial

f(x, y) =
∑

aijx
iyj,

we consider the set ∆(f) = {(i, j) ∈ N2 | aij 6= 0}, called the carrier of f .

Now, if f(x, y) is quasi-homogenous, then there are rational numbers µ and ν such that i+µj = µ

for all (i, j) ∈ ∆(f). This means that all the points ∆(f) lie on the line i + µj = ν in R2, and
this line has slope − 1

µ
and intersections the i-axis at i = ν.

We provide an example of this process.
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Example 8. Take f(x, y) = x3 + x2y + 4y3 = 0.

1 2 3 4 5 6

1

2

3

4

5

6

FIGURE 5. Newton Polygon of f(x, y) = x3x2y + 4y3 = 0.

In this case, µ = 1, ν = 3, and so we have

f(x, tx) = x3(1 + t+ 4t3),

with g(t) = 1 + t+ t3. The roots of g are t = −1
2
, 1

4
(1− i

√
7), 1

4
(1 + i

√
7). And so our solutions

are y = −1
2
x, 1

4
(1− i

√
7)x, 1

4
(1 + i

√
7)x.

As we know how to find solutions y of f(x, y) in terms of powers of x when f is quasi-
homogeneous, we look for a method of partitioning any polynomial f(x, y) ∈ C[x, y] into a
quasi-homogeneous component and a remainder.

To form such a partition, we construct a convex hull containing ∆(f), and consider its boundary.
This convex hull is the intersection of all half planes which contain all the points of ∆(f) and do
not contain a point of the third quadrant. The boundary of this convex hull consists of a compact
polygonal path and two half-lines. We call this compact polygonal path the Newton polygon
of f , denoted N(f). We will use the components of the Newton polygon to obtain our desired
partition of f(x, y).

We begin by finding a power series expression for the lower terms of f(x, y), and these corre-
spond to the steepest segment of N(f). Let the slope of the steepest segment of N(f) be− 1

µ0
and

the continuation intersects the i-axis at ν0. We now partition f(x, y) in to a quasi-homogeneous
component f̃(x, y) and a remainder r(x, y) using µ and ν as follows:

(211) f(x, y) =
∑

i+µ0j=ν0

αijx
iyj +

∑
i+µ0j>ν0

αijx
iyj.
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We know how to find solutions y in terms of x for the quasi-homogeneous component as y =

t0x
µ0 , where t0 is a zero of g(t) as above. Thus, y = t0x

µ is a good approximation for solutions
y of f(x, y).

In fact, the error of this approximation is precisely

r(x, tµ00 ) =
∑

i+µ0j>ν0

αijx
i+µ0jtj0,

and so to obtain a better approximation of solutions y to f(x, y), we substitute y = xq1(t0 + y1),
with µ0 = q0

p0
, into f(x, y):

f(xq01 , x
q0
1 (t0 + y1)) = xν0p01 f1(x, y)

as we know xνp1 divides f(xq1, x
q
1(t0 + y1)) by (211).

Next, we consider the carrier of f1(x, y), and repeat the process, we obtaining an expression:

y = xµ0 (t0x
µ1
1 (t1 + xµ2 (+ . . .)))

which is an expansion of y as a series of increasing fractional powers of x. For such an expression
to be meaningful, the denominators of the exponents should eventually stabilise, that is, there
should be an n such that the largest denominator is n.

To see such an n exists, let mi be the y-generality order of fi obtained above. If mi+1 = mi,
then gi+1(t) = c(t − t0)mi and the coefficient αa,m−1 of tm−1 does not vanish. In this case,
a + µi(m − 1) = µim, and µi ∈ N. The mi form a descending sequence in N, hence there are
only finitely many instances where mi+1 6= mi. Thus, we can find an index j such that for all
i ≥ j mi+1 = mi. Letting n be the least common multiple of the mi for i ≤ j, we can express y
as a power series in x

1
n .

Thus, the following definition makes sense.

Definition 2.4.19. Given a polynomial f(x, y) =
∑
αijx

iyj = 0, the expression y =
∑
aix

i
n ,

as defined above (the powers series in x
1
n ) is called the Puiseux (Series) expansion of f .

Example 9. Take f(x, y) = 3x5 + x2y + 4y3 = 0.
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1 2 3 4 5 6
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FIGURE 6. Newton Polygon of f(x, y) = 3x5 + x2y + xy2 + 4y3 = 0.

In this case, µ0 = 1 and ν0 = 3, and so we form the partitions:

f(x, y) = (x2y + 4y3) + (3x5)

As a first approximation, we find a solution y for the quasi-homogeneous part

f(x, y) = x2y + 4y3

by substituting y = tx, we have

f(x, t) = x3(t+ 4t3).

Now, t0 = − i
2

is a non-zero root of g(t), and so

y0 = − i
2
x

is the first approximate of the solution of f(x, y) = 0.

We improve our approximation by substituting y = x(− i
2

+ y1) into f(x, y) = 0, obtaining a
new power series in x and y1:

f(x, y1) = 3x5 + x3(− i
2

+ y1) + x3(− i
2

+ y1)2 + 4x3(− i
2

+ y1)3

f(x, y1) = x3(5x2 + (− i
2

+ y1) + y2
1 − iy1 −

1

4
+ y3

1 −
3iy2

1

2
− 3y1

4
+
i

8
)
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and repeating the process with f1(x, y1) = 5x2 + (− i
2

+ y1) + y2
1− iy1− 1

4
+ y3

1−
3iy21

2
− 3y1

4
+ i

8
.

Assume f(x, y) is irreducible, y-general of order m and has multiplicity m at (0, 0), then the
Puiseux expansion of f is of the form

y = ak1x
k1 +

∑
aix

i k1 ≥ 1, ki > ki−1, k1 ∈ Q

which we can also express parametrically as follows:

x = tm

y = a1t
k1 + a2t

k2 + . . .

which we call the parametric Puiseux expansion of f(x, y) = 0.

In Chapter 4, we examine the parametric Puiseux expansion of a polynomial f , to show that
ways in which we represent a standard resolution of a curve C = ζ(f) are equivalent. To do
so, we examine the relationship between the multiplicity of the point under each σ-process, and
relate them to the characteristic Puiseux exponents of f [3].

Definition 2.4.20. Let f(x, y) =
∑
αijx

iyj = 0 be irreducible, with Puiseux parametric expan-
sion x = tm, y =

∑
aix

ki , where m ≤ k1 < k2 < . . . ∈ Z and ai 6= 0 for all i. We define the
Puiseux characteristic exponents of f as follows:

Set Γ0 = m and Γj = gcd(m, k1, k2, . . . , kj) for j ≥ 1.

The Γi form a non-increasing sequence of positive integers, which stabilises for some j0 with
Γj = 1 for all j ≥ j0. We now define the sequence of exponents Λ0 < . . .Λl, setting Λ = m and
defining the other Λj’s as the kj such that Γj−1 > Γj . These Λi are the characteristic Puiseux
exponents.

In Section 3.1, we examine the Newton polygons of curves under σ-processes to investigate how
the intersection between the strict pre-images of two curves C and D are related to the degree to
which D contacts C. This requires the following results about Newton polygons, collected from
[1].

Lemma 2.4.21. Take a curve C = ζ(f(x, y)) ⊂ C2

(a) if C is irreducible and different from the coordinate axes, the Newton polygon of f
consists of a single segment.

(b) if C is a reducible curve, with irreducible components Ci, the segments of the Newton
polygon of C are the Newton polygons of the Ci suitably shifted. That is, take the
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irreducible components ofC, sayCl, with N(Cl) the segment between (0, pl) and (ql, 0).
Then N(C) consists of the segments `l, where `l is between(∑

k<l

qk,
∑
j≥k

pj

)
and (∑

k≤l

qk,
∑
j>k

pj

)
.

We will use this Lemma to examine the affect of σ-processes on the Newton polygon of a curve,
and show that after a finite sequence of σ-processes, the strict transform C ′ is regular.



CHAPTER 3

Resolving Singularities

Perhaps you have been looking in the
wrong places.

J.K. Rowling
Harry Potter and The Half-Blood Prince

This chapter studies resolving singularities of a plane curve by means of σ-processes. We blow
up the singular point p of the curve C ⊂ C2 and project back to obtain a birationally equivalent
plane curve C ′, whose points corresponding to p ∈ C have lower multiplicity than p. We show
that after a finite number of σ-processes we arrive at a regular curve. Using the Newton polygons
of the curve C and a curve D which has maximal contact with C at the singularity, we obtain
an upper bound for the number of iterations required. We introduce an algorithm to increase the
efficiency of this process when the singularity is an ordinary singularity. Quadratic transforma-
tions allow us to reduce non-ordinary singularities to ordinary ones. Since σ-processes are local
and singularities are isolated, resolving one singularity does not affect the others, allowing us to
resolve singularities simultaneously, as demonstrated in Section 3.4. Initially, we assume that the
singular curve C is irreducible, that is, it is not the union of two curves C(1) and C(2). The final
Section shows how to extend our results to curves which are not necessarily irreducible.

We will now formulate the notion of birational equivalence between two curves. We begin
defining what a morphism from C to D is. Take a map ϕ : C −→ D. If ϕ is continuous,
and for any open subset U of D and a rational polynomial f defined on U , the function f ◦ ϕ
is a rational polynomial defined on ϕ−1(U) in C, then we call ϕ a morphism from C to D.
A rational polynomial on an open subset U of D is the quotient of two polynomial functions
f(x, y), g(x, y) ∈ C[x, y] from U to C, such that g(x, y) 6= 0 for all (x, y) ∈ U .

We can now define birational equivalence [2].

Definition 3.0.1. Let C and D be two curves of CP2, and U1, U2 open subsets of C two mor-
phisms f1 : U1 −→ D and f2 : U2 −→ D are equivalent if f1 |U1∩U2= f2 |U1∩U2 . The equivalence
class

[
f1

]
, denoted F , of such morphisms is called a rational map from X to Y . The rational

map F is called birational if there are open subsets U ⊂ C and V ⊂ D and a representative f
31
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of F , such that f : U −→ V is an isomorphism. In this case, we say C and D are birationally
equivalent.

Remark 3.0.2. In general, the notion of birationally equivalence allows us to ignore subvarities
of lower dimension. For a curve C, this amounts to removing a finite set of points, say A.
Birational maps also respect the local rings at points in C \ A.

3.1. σ-processes

Recall that we moved from considering curves in C2 to considering them in CP2, as this allowed
us to define an invariant of the intersection of two curves. This invariant was the sum of the
intersection multiplicities, which is equal to the product of the degrees of the defining polyno-
mials. This move also allowed us to see singularities of a curve in C2 which occur at infinity:
for example, C = ζ(x2y − 1) is a non-singular curve, but homogenising, we obtain X2Y − Z3,
which has a singularity at the point [0 : 1 : 0] in CP2.

While we have moved to considering curves in CP2, blowing up a point p ∈ CP2 is a local
process: it does not affect points in other coordinate patches of CP2. Thus, when resolving
singularities of curves, we blow up at a point p in C2. By a coordinate transformation, we may
assume that p = (0, 0), and thus only define a blow up at (0, 0) [4].

Definition 3.1.3. Let B = {((x, y), [u : v]) | xv = yu} ⊂ C2 × CP1, and

π : B −→ C2

((x, y), [u : v]) 7−→ (x, y)

Then π−1(C2) is a blow up of C2 at (0, 0).

Given a curve C ⊂ C2, the strict pre-image of C is

C̃ := π−1(C \ {(0, 0)},

and the exceptional line is
E := π−1 ((0, 0)) .

Note that:

(i) π−1 ((0, 0)) = {(0, 0)} × CP1

(ii) π|B\{{(0,0)}×CP1} : B \
{
{(0, 0)} × CP1

}
−→ C2 \ {(0, 0)} is an isomorphism.

Remark 3.1.4. We can think of the space B attaching to each point (x, y) information about the
slope of the secant at (x, y), which is y

x
. The slope of the secant is the height of the point (x, y, y

x
)

in B. The only point at which this analogy fails is (0, 0). The pre-image of (0, 0) we called the
exceptional line, a copy of CP1.
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CP1 is the union of the coordinate charts,M1 and M2, where

M1 = {[1 : v]|v ∈ C}

and
M2 = {[u : 1]|u ∈ C},

each of which of is homeomorphic to C. This allows us to identify B ∩ (C2 ×Mi) with C2 by
means of the maps

π̃1 : B ∩ (C2 ×M1) −→ C2

((x, xv), [1 : v]) −→ (x, v)

π̃2 : B ∩ (C2 ×M2) −→ C2

((yu, y), [u : 1]) −→ (u, y).

The strict pre-image of a curve C ⊂ C2 is no longer a plane curve, however, C ′ := π̃i(C̃) is
another plane curve, the strict transform of C.

Remark 3.1.5. We still refer to π̃i(E) as the exceptional line.

While π̃−1
i is not a function, π ◦ π̃−1

i is.

Definition 3.1.6. Let
Υ = π ◦ π̃−1

i ,

then Υ−1 is a σ-process at (0, 0) ∈ C2.

Remark 3.1.7. We obtain two σ-processes

Υ1 = π ◦ π̃−1
1 : C2 \ {(x, y) ∈ C2 | x = 0} −→ C2 \ {(x, y) ∈ C2 | x = 0},

and
Υ2 = π ◦ π̃−1

2 : C2 \ {(x, y) ∈ C2 | y = 0} −→ C2 \ {(x, y) ∈ C2 | y = 0},

For (x, y) ∈ C2 \ {(x, y) ∈ C2 | x = 0},

Υ1(x, y) = (x, xy),

and
Υ−1

1 (x, y) = (x,
y

x
),

and if (x, y) ∈ C2 \ {(x, y) ∈ C2 | y = 0},

Υ2(x, y) = (xy, y),
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and

Υ−1
2 (x, y) = (

x

y
, y).

In either case we take

C ′ = Υ−1(C \ {(0, 0)})

as the strict transform of C.

If no tangent to the curve C at the singularity has slope 0 or 1
0

=∞, then either Υ1 or Υ2 is. If the
slope of a tangent is 0, we use Υ1, whereas if the slope is∞, then we use Υ2. The corresponding
coordinate charts on B ignore the issues presented by such gradients.

Remark 3.1.8. Traditionally, blow ups and σ-processes are used interchangeably to refer to
Definition 3.1.3, in this thesis we distinguish the two: a blow up is the map from Definition
3.1.3, and it does not generate another plane curve, whilst a σ-process as in Definition 3.1.6
does.

Proposition 3.1.9. The map Υ is a birational map from C ′ to C.

Proof. Let p = (0, 0) be a singularity of C, and let P = Υ−1(p).

Then P ⊂ {(x, y) ∈ C2 | x = 0}.

Now, Υ induces an isomorphism between

C2 \ {(x, y) ∈ C2 | x = 0}

and

C2 \ {(x, y) ∈ C2 | x = 0},

so induces an isomorphism between

C ′ ∩
(
C2 \ {x = 0}

)
and

C ∩
(
C2 \ {x = 0}

)
.

Hence Υ is a birational map from C ′ to C. �

So, given a C ⊂ C2, C ′ = Υ−1(C \ {(0, 0)}) is a birationally equivalent plane curve. We have a
way of obtaining birationally equivalent curves: σ-processes. Unfortunately, a single application
of a σ-processes to a singular curve does not necessarily generate a non-singular curve.
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Example 10. Take f(x, y) = y2 − x5 ∈ C[x, y] and let C the zero set of f(x, y).

x

y

FIGURE 7. C = ζ(y2 − x5)

To apply the σ-process, set y = xy: f (1) = x2(y2 − x3), with E1 defined by x = 0

x

y

E1

FIGURE 8. ζ(y2 − x3)

In this case, C ′ = ζ(v2 − x3) is still a singular curve.

Thus, the application of a σ-process does not necessarily result in a non-singular curve. However,
the complexity of the singularity has been reduced, and we can iterate applications of the σ-
process. The singularity of a curve is resolved when a finite sequence of σ-processes produces a
non-singular curve. We formalise this by defining a standard resolution of a singularity.

Definition 3.1.10. Let C2
k

Υk−→ C2
k−1

Υk−1−−−→ . . .
Υ2−→ C2

1
Υ1−→ C2 be a sequence of σ-process

centred at the singularity (0, 0) of the irreducible curve C ⊂ C2.
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Then Ci ⊂ C2
i is the ith strict pre-image of C, and Ei = Υi(0, 0) is the exceptional line intro-

duced by the ith σ-process.

We call Ci ⊂ C2
i a standard resolution of the singularity (0, 0) of C if Ci satisfies the following

conditions:

(a) for all j ≥ i, Cj ⊂ C2
j is non-singular

(b) Ek ∩ El ∩ Ci = ∅ for all k 6= l

(c) Ci intersects E = ∪jk=1Ek transversally.

Remark 3.1.11. We impose (b) and (c) on Ci, as these ensure that we can decompose the pre-
image of a singular curve C under Υ into the exceptional lines and the strict pre-image nicely.
That is, the intersections between E and Ci should not have a multiplicity greater than 1.

3.1(a). Examples. We now provide some examples of resolving singularities of irreducible
curves in C2.

Recall Remark 3.1.7
Υ−1

1 (x, y) = (x, xy)

and
Υ−1

2 (x, y) = (xy, y).

Example 11. Take f(x, y) = y2 − x3 ∈ C[x, y] and let C be the zero set of f(x, y).

x

y

FIGURE 9. ζ(y2 − x3)

Then C has a singularity (0, 0) with multiplicity 2.

As the tangent to C at (0, 0) has slope 0, we substitute y = xy for the first σ-process, obtaining
the polynomial x2y2 − x3 = x2(y2 − x), with C1 = ζ(y2 − x) and E1 defined by x = 0
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x

y

E1

FIGURE 10. First strict transform of (0, 0) ∈ ζ(y2 − x3).

The tangent toC1 at (0, 0) has infinite slope, so we substitute x = xy: x2y4−x3y3 = y3x2(y−x),
with C2 = ζ(y − x) and E2 defined by y = 0,

E1

E2

x

y

FIGURE 11. Second strict transform of (0, 0) ∈ ζ(y2 − x3).

For the third σ-process, we substitute y = xy: obtaining y5x2(y − xy) = y6x2(1 − x), with
C3 = ζ(1− x) and exceptional lines E1 = E3 given by x = 0 and E − 2 given by y = 0, which
is a standard resolution.
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x

y

E1

E2

FIGURE 12. The standard resolution of the singularity (0, 0) ∈ ζ(y2 − x3).

Example 12. Let f(x, y) = y2 − x3 − x2 ∈ C[x, y] and let C be the zero set of f(x, y).

x

y

FIGURE 13. ζ(y2 − x3 − x2)

Then C has a singularity at (0, 0) with multiplicity 2.

For the σ-process, we substitute y = xy:, obtaining x2y2 − x3 − x2 = x2(y2 − x − 1), with
C1 = ζ(y2 − x− 1) and E1 defined by x = 0, which is a standard resolution.
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x

y

E1

FIGURE 14. Standard resolution of singularity (0, 0) ∈ ζ(y2 − x3 − x2).

Example 13. Take f(x, y) = y2 − x5 ∈ C[x, y] and let C be the zero set of f(x, y).

x

y

FIGURE 15. C = ζ(y2 − x5)

For the first σ-process, we substitute y = xy, obtaining x2(y2 − x3), with C1 = ζ(y2 − x3) and
E1 defined by x = 0.
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x

y

E1

FIGURE 16. ζ(y2 − x3)

We reach a standard resolution by blowing up the singularity (0, 0) of ζ(y2− x3), as in Example
11.

3.2. Existence of Standard Resolutions

To show that a standard resolution exists, we construct a smooth curve D through the singular
point p of C which approximates C so well that the strict pre-images Di of D remain tangential
to the strict pre-images Ci of C at the points in the pre-image of pwith the same multiplicity as p.
After each σ-process, we will choose our coordinates such that the strict pre-image Di and new
exceptional line Ei are the axes, and consider the Newton polygon of Ci. We use the gradients
of the segments of N(Ci) to measure the amount by which we have resolved the singularity. We
then show that a finite sequence of σ-processes reduces the multiplicity of p. This then allows
us to show that after a finite sequence of σ-processes, we obtain a strict pre-image which is a
non-singular plane curve.

3.2(a). Maximal Contact. To construct such a curve D, we introduce the contact exponent
of C and D at a point p, and the first contact exponent of C at p, as well as the notion of curves
having maximal contact. We then examine the conditions under which the x-axis has maximal
contact with a curve at (0, 0). After this, we show that the first contact exponent of a curve at
a singularity is finite, before introducing infinitely near points pi of a singularity p. We prove
that the bound on the number of infinitely near points pi with the same multiplicity νp(C) is the
integer part of the first contact exponent of C at p.

We temporarily remove our assumption that the curves we consider are irreducible, allowing us
to remove it completely in the last section of this chapter.
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The intersection multiplicity νp(C,D) of C and D measures the contact between C and D at p,
in fact, it counts the number of infinitely near points in of p which are common to C and D. It
can be shown that for an irreducible curve C, D has maximal contact with C at p if νp(C,D) is
the supremum of νp(C, D̃), over all smooth curve D̃ through p [1].

If C is reducible, then we require more subtlety. Comparing intersection numbers νp(C(i), D)

between irreducible components of C(i) of C, does not allow us to compare the contact ofD with
each C(i). Note that as D is smooth, νp(C(i), D) ≥ νp(Ci), and equality holds if the intersection
is transversal, and it is possible that νp(C(i), D) > νp(C

(i), D) as νp(C(i)) > νP (C(j)), even if
D intersects C(i) transversally, yet shares a tangent with C(j). We can overcome this by consider
the quotient νp(D,Ci)

νp(Ci)
instead of νp(C(i), D). This contact exponent of C(i) and D at p, is a better

way to measure the contact between D and different components of C at p.

Definition 3.2.12. Consider a curve C in C2, with irreducible components Ci. Let p be a point
of C.

I. For any smooth curve D through p, we define the contact exponent of D and C at p as

δp(D,C) = min
i

νp(D,Ci)

νp(Ci)

II. The first contact exponent of C at p is

δp(C) = sup
D
δP (D,Ci)

III. A smooth curve D through p has maximal contact with C at p if

δp(D,C) = δp(C)

Next, we investigate the relationship between the contact exponent of C and D = ζ(y) at p
and the Newton polygon of f , N(f). From Lemma 2.4.21, we know that if f = fi . . . fr is
the decomposition of f into irreducible factors, then N(f) consists of the N(fi) suitable joined
together, and N(fi) consists of a single segment. We use the slopes of these segments as a way
of measure how much a σ-process improves a singularity. Suppose that the slope of this segment
is 1/γi. Then the slope of the steepest segment of N(f) is 1

γ
with

γ = min
i
γi.

Lemma 3.2.13. Let
C = ζ

(
f(x, y) =

∑
aαβx

αyβ
)

and f = fi . . . fr be the decomposition of f into irreducible factors. Let the slope of the steepest
segment of N(f) be 1

γ
, that is

γ = min
i
γi
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where γi is the slope of the Newton polygon of fi.

Then

γ = δ(0,0)(D,C)

Proof. Recall Definition 3.2.12

δ(0,0)(D,C) = min
i
δ(0,0)(D,Ci)

so we need only show that

γi = δ(0,0)(D,Ci).

By our assumptions, the y-axis is not tangential toCi, and fi is y-general of ordermi = ν(0,0)(Ci)

for all i. By Lemma, 2.4.21 N(fi) is just a single segment of the following form:

(0,m)

(miδi, 0)

Next, we compute the intersection multiplicity of D and Ci at (0, 0), which is

dimC
C[x.y]

/
〈y, fi〉.

Note that fi(x, y) − fi(x, 0) is a power series divisible by y, and thus is contained in the ideal
〈y, fi〉, and fi(x, 0) = xmiγih(x) with h(0) 6= 0. So h is a unit in C{x, y} and

〈y, fi〉 = 〈y, fi(x, 0)〉 = 〈y, xmiγi〉.

Hence,

ν(0,0)(D,Ci) = dimC
C[x.y]

/
〈y, fi〉 = miγi

and

δ(0,0)(D,Ci) =
ν(0,0)(D,Ci)

ν(0,0)(Ci)
=
miγi
mi

= γi.

�



3.2. EXISTENCE OF STANDARD RESOLUTIONS 43

Using this Lemma, we now derive conditions under which D has maximal contact with C at p,
by determining when D does not have maximal contact with C at p.

Proposition 3.2.14. The curve D = ζ(y) has non-maximal contact with the curve C at (0, 0) if
and only if the homogeneous part F (x, y) of f(x, y) is of the form

F (x, y) = c(y − λxγ)m.

Proof. We begin by assuming that D does not have maximal contact with C at (0, 0), so there is
a smooth curve D′ such that

(31) δ(0,0)(D
′, C) > δ(0,0)(D,C).

From our assumptions, the curveD′ is not tangential to the x-axis at (0, 0), as otherwise δ0(D′, C) =

1 since the x-axis is not tangential to C.

Thus, by the Implicit Function Theorem, we can describe D′ by an equation

g(x, y) = y −
∞∑
i=1

bix
i,

and by considering N(g), we know that bi = 0 for all i < d := δ(0,0)(D,D
′), and bd 6= 0.

Next we show that
d = δ(0,0)(D,D

′) = δ(0,0)(D,C),

by showing that
δ(0,0)(D,D

′) < δ(0,0)(D,C) < dδ(0,0)(D,D
′).

First assume

(32) d = δ(0,0)(D,D
′) < δ(0,0)(D,C)

and then perform the coordinate transform

x′ = x

(†) y′ = y −
∑
i

bix
i

and put g′(x′, y′) = g

(
x′, y′ +

∑
i

bix
′i

)
.
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In the new coordinate system, D′ consists of the points (x′, y′) with y′ = 0 and N(g′) is the
Newton polygon associated to D′ after the coordinate transformation.

We now discuss the relation between N(g) and N(g′). The monomials xαyβ of g become mono-
mials of the form x′α(y′ +

∑
bix
′i) in the expression of g′. We know that bi = 0 for all

i < δ(0,0)(D,D
′), and thus the points in the carrier of g′ which are associated with the term

aαβx
αyβ all lie on, above, or to the right of the line through (α, β) with slope −1

d
.

Thus the term (x′)mδ(0,0)(D,D
′)(y′)0 is only related to the term ym in the expression of g, with

coefficient bmd 6= 0.

Hence, N(g′) is the segment between (0,m) and (md, 0) which has slope −1
d

. By Lemma 3.2.13
δ(0,0)(D

′, C) = −1
d

.

But, (31) and (32) yield

δ(0,0)(D
′, C) = d < δ(0,0)(D,C) < δ(0,0)(D

′, C)

a contradiction, as D′ has greater contact with C than D.

Next, we assume that

(33) d = δ(0,0)(D,D
′) > δ(0,0)(D,C)

Again performing the transformation (†), the points of ∆(g′) stemming from the monomial
aαβx

αyβ of g all lie on or above the line through (α, β) with slope −1
d

. These lines are not
as steep as the first segment of N(g), and thus the points of ∆(g) on this segment are also in
∆(g′), so that the slope of the first segment of N(g′) has slope −1

γ
.

By Lemma 3.2.13
δ(0,0)(D

′, C) = δ(0,0)(D,C)

in contradiction with (31).

Thus

δ(0,0)(D,D
′) = δ(0,0)(D,C) = γ.

The action of the coordinate transform (†) on the Newton polygon is as follows: the term
aαβx

αyβ generates points in ∆(g′) which are on or above the line with gradient −1
γ

through
the point (α.β). From (31), the steepest segment of N(g′) is flatter than the first segment of
N(g), and so (†) kills all the points of ∆(g) except (0,m) which lie on the first segment of N(g).
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Hence F (x, y) = cy′m + higher order terms, and by (†),

F (x, y) = c(y − bδxγ)m

Conversely, we show that if

F (x, y) = c(y − λxγ)m

then D has non-maximal contact with C.

Take the curveD′ = ζ(y−λxδ), which is smooth and passes through (0, 0). After the coordinate
transformation

x′ = x

y′ = y − λxδ

D′ is given by y′ = 0 and the term aαβx
αyβ of general f(x, y) is transformed to aα,βx′α(y′λx′δ)β .

Thus

f ′ = a0my
′m +

∑
α+δβ>γm

aαβx
′α(y′ − λx′γ)β.

The points in ∆(h =
∑

α+δβ>γm aαβx
′α(y′−λx′γ)β) corresponding to the aαβ(x′)α(y′+λ(x′)γ)β

such that α+ γβ > γm are all above the line through (0,m) with gradient −1
γ

, and thus this line
meets N(f ′) only at (0,m). Lemma 3.2.13 implies δ(0,0)(D

′, C) > γ = δ(0,0)(D,C), which
means D′ has greater contact with C than D, and so D does not have maximal contact with C at
p. �

3.2(b). Contact Exponent at a Singularity. Now that we understand the conditions under
which the x-axis has maximal contact with a singular curve C at the singularity (0, 0), we show
that the contact exponent of C at a singularity is finite. Then we show that given a smooth curve
D through (0, 0) which has maximal contact with C, their pre-images have maximal contact for
a finite number σ-processes. To show this, we introduce infinitely near points of a singularity,
and use these to obtain a bound on the number of σ-processes required before the multiplicity of
the singularity decreases.

We first show that the contact exponent of C at a regular point p is infinite. This is equivalent to
no curve having maximal contact with C at p.
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Lemma 3.2.15. If the point p is a singularity of the curve C, then the first contact exponent
δp(C) of C at p is finite.

Proof. We show that if δp(C) is infinite, then p is a regular point of C.

Without loss of generality, assume that p = (0, 0), δp(C) = ∞, and that D(0) is a smooth curve
through p. We choose coordinates such that D(0) = ζ(y) and the polynomial f(x, y) of which C
is the zero set is a Weierstrass polynomial of degree m, that is the coefficient of x0ym is 1, and
we consider f as a polynomial in y with coefficients that are polynomials in x.

f(x, y) = ym + am−1(x)ym−1 + . . .+ am(x)

Thus, every point of ∆(f) \ {(0,m)} lies below the line β = m− 1.

Now, if D(0) = C, then C is non-singular, so we assume D(0) 6= C. Then D(0) has non-maximal
contact with C at (0, 0).

By Lemma 3.2.14

f(x, y) = a0m(y − b0x
γ0)m +

∑
α+mγrβ>γrm

aαβx
αyβ γ ∈ N

and the curve D(1) = ζ(y − b0x
γ0) has better contact with C at p.

Thus, we perform the coordinate transformation x′ = x, y′ = y − boxγ , so that D(1) is given by
y′ = 0.

If D(1) 6= C, we may apply this procedure to D(1) and obtain a curve D(2) which has better
contact with C at p, and another constant γ2.

Iterating, we obtain a sequence (γi) which is monotonically increasing, and

∑
α+mγrβ>γrm

aαβx
αyβ

becomes divisible by an arbitrarily large power of x, when r is sufficiently large. This follows
from the observation that if (γi) is a finite sequence, then Dk = C for some k ∈ N. Otherwise,
we have for each r the expression

f(x, y) = a0m(yr − brxγr)m +
∑

α+γrβ>mγr

arαβx
αyβr .

By expanding (yr − brxγr)m, we see that the points in
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∆

( ∑
α+γrβ>γrm

a
(r)
αβx

αyβr

)

are all on or above the line through (0,m) which has gradient −1
γr

and below the line β = m− 1.

Thus, the sequence of remainders converges to 0 and

(34) f(x, y) =
∑

a0m

(
y −

∑
bix

δi
)m

which implies that C is regular at (0, 0).

�

With the necessary and sufficient condition for D to have maximal contact with C at p from
Proposition 3.2.14, we investigate what happens to D under a σ-process centred at p = (0, 0) ∈
C2. We do so by examining the points in the sequence of strict transforms which are in the
pre-image of (0, 0): the points of the blow up which are ‘infinitely near’ to the point (0, 0). The
multiplicities of these points in the pre-images Ci of C tell us by how much each σ-process has
resolved the singularity. We will show that there are only finitely many infinitely near points
with the same multiplicity as the original singularity, and thus a finite sequence of σ-processes
reduces the multiplicity. Repeating, we obtain a bound on the number of σ-processes required
before we obtain a non-singular curve.

Definition 3.2.16. Take a curve C in C2, and a sequence of σ-processes

C2 Υk−→ C2 Υk−1−−−→ . . .
Υ2−→ C2 Υ1−→ C2,

with Υ1 centred at p ∈ C. Let Ei = Υi(p), and Ci be the strict pre-image of C under φi. The
points x ∈ Ei ∩ Ci are called infinitely near points of p ∈ C, and those with the additional
property that νx(Ci) = νp(C) =: ν are called ν-tuple infinitely near points of p in Ci.

We begin by investigating the contact between the strict pre-images of the singular curve C and
a smooth curve D which has maximal contact with C at the singularity (0, 0). Assume that at
(0, 0) ∈ C = ζ(f(x, y)) with f(x, y) =

∑
aαβx

αyβ , the curve D = ζ(y) has maximal contact
with C at (0, 0), that is δ(0,0)(C) = δ(0,0)(D,C). Let

Υ−1 : C2 \ {(x, y) ∈ C2 | x = 0} −→ C2 \ {(x, y) ∈ C2 | x = 0}

be a σ-process centred at (0, 0), given by Υ−1((u, v)) = (v, uv) in a neighbourhood of p =

(0, 0).
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Let p1 be an infinitely near point of (0, 0), and the strict pre-images of C and D under Υ−1 be C1

andD1 respectively. Then, C1 is given by f ′(u, v) =
∑
aαβv

α+β−muβ . The degree of xα+β−myβ

is α + 2β − m. Thus the multiplicity of p1 is m if aαβ = 0 for α + 2β < 2m, which implies
that this occurs when the slope of the steepest segment of the Newton Polygon of C is less than
−1
2

.

Thus δ(0,0)(D,C) ≥ 2.

Under a σ-process Υ−1, the segment l of N(f) between (0,m) and (α, β) corresponds to the
segment l′ between (0,m) and (α+mβ, β) of N(f ′). The slope of l is −1

α/(m−β)
and the gradient

of l′ is −1
α/(m−β)−1

.

Thus, if the slope of the steepest segment of N(f) is −1
γ

, then the gradient of the steepest segment
of N(f ′) is −1

γ−1
. Applying Lemma 3.2.13, we obtain

(35) δp1(D1, C1) = δ(0,0)(D,C)− 1

Next, we consider the contact exponent ofD1 andC1 at p1. We know that the quasi-homogeneous
component of f(x, y) is found through the steepest segment of N(f1) and is of the form

F1(v, u) =
F (v, u)

vm
.

If D1 does not have maximal contact with C1 at p1, we know that F1(v, u) = (u − λvδ)m is
binomial by Lemma 3.2.14. Then

F (x, y) = xm(y/x− λxδ)m = (y − λxδ+1)m

which by the same Lemma implies that D has non-maximal contact with C at p, a contradiction.
Thus we obtain the following proposition:

Proposition 3.2.17. If D has maximal contact with C at p and δp(D,C) ≥ 2, then there is a
p1 ∈ C1 such that σ(p1) = p and νp1(C1) = νp(C) = m. Moreover, given pi ∈ D1, D1 has
maximal contact with C1 at p1, and

(36) δp1(C1) = δp1(D1, C1) = δ(0,0)(D,C)− 1

Using Lemma 3.2.15, we can prove that the number of infinitely near points of p with the same
multiplicity is bounded.
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Proposition 3.2.18. If C is a curve in C2, and p ∈ C is such that νp(C) = m, then the number of
m-tuple infinitely near points of p is the integer part bδp(C)c of the first characteristic exponent
of C at p.

Proof. Without loss of generality, we assume that p = (0, 0).

If m = 1, then δ(0,0)(C) =∞, and successive σ-processes generate regular curves, and so this is
trivially true.

Thus, we assume that m > 1. By Lemma 3.2.15, there is a smooth curve D which has maximal
contact with C at p. From Proposition 3.2.17, we know that after bδ(0,0)(C)c σ-processes we
arrive at a curve C ′ and point p′ such that δp′(C ′) ≤ 2. Any singularities which are generated
by this sequence of σ-processes all have multiplicity no greater than m. Hence, the number of
m-tuple points is bδp(C)c

�

This shows that any singularities generated by a finite sequence of σ-processes each have lower
multiplicity than the original singular point p ∈ C. By induction on νp(C), we arrive at a curve
which is non-singular after a finite sequence of σ-processes. As a singular curve C only has
finitely many singularities and σ-processes do not affect other singularities, we can perform a
sequence of blow ups at each singular point pi ∈ C, each of which resolves the singularity at
pi.

Summarising we have:

Theorem 3.2.19. The singularities of an irreducible curve C ⊂ CP2 can be resolved by a finite
sequence of σ-processes.

3.3. Algorithmic Approaches

The use of σ-processes to resolve the singular points of a curve requires long series of calcula-
tions, which include choices. While for points of low multiplicity this is of no great concern,
as the multiplicity of the singularity increases, we must address these issues. Thus, we seek an
algorithm which is equivalent to a sequence of σ-processes in resolving a singularity of a curve
C ⊂ C2. We use the algorithm developed in [2], and as blow ups and σ-process are local, it is
sufficient to provide it for curves in C2.

Given a curve C = ζ(f(x, y)) ∈ C[x, y], we partition f(x, y) into homogenous components as
follows:

f(x, y) = fr(x, y) + fr+1(x, y) + . . .+ fn(x, y),

where fk ∈ C[x, y] is a homogeneous polynomial of degree k.
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Remark 3.3.20. The multiplicity of the point (0, 0) ∈ C is r, and n is the degree of f(x, y).

Defining

(37) f ′(x, z) = fr(1, z) + x1fr+1(1, z) + . . .+ xn−rfn(1, z)

the curve C ′ = ζ(f ′(x, z)), is a plane curve in C2 \ {Υ−1(P )}, which is birationally equivalent
to C in C2. If we are resolving an ordinary singularity at (0, 0), that is the number of tangents to
C is equal to ν(0,0)(C), then this algorithm generates a non-singular plane curve.

Example 14. Take the curve C = ζ(x4 − x2y − y3),

x

y

Applying the algorithm, we note that f3 = −x2y − y3 and f4 = x4, so we have f ′(x, z) =

−1z − z3 − x× 1 = x− z − z3, which is a non-singular curve.

x

z

We also want to resolve singularities which are non-ordinary multiple points of the curve C ⊂
CP2 with an algorithm, as in Example 14. The best outcome would be to use the same algorithm.
The following example shows that this algorithm is not sufficient.
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Example 15. Take C = ζ(y2 − x5),

x

y

FIGURE 17. C = ζ(y2 − x5)

Then, the algorithm yields C ′ = ζ(z2 − x3), which is still singular.

x

z

FIGURE 18. C ′ = ζ(z2 − x3)

From this example, we see that the algorithm developed does not necessarily give us a stan-
dard resolution if the original curve has a non-ordinary singularity. To overcome this issue, we
introduce quadratic transformations of CP2, which transform non-ordinary multiple points into
ordinary multiple points.

With coordinates [X : Y : Z] on CP2, we call the points P 1 = [0 : 0 : 1], P 2 = [0 : 1 : 0],
P 3 = [1 : 0 : 0] fundamental points, and define the lines L1 = ζ(Z), L2 = ζ(Y ) and L3 = ζ(X),
called fundamental lines. Let U = CP2 \ {P 1, P 2, P 3}. We define the standard quadratic
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transformation Q, as we can obtain other quadratic transformations by composing Q with a
change of coordinates T [1].

Definition 3.3.21. The standard quadratic transformation of CP2 is the map

(38) Q : U −→ CP2, [X : Y : Z] 7−→ [Y Z : XZ : XY ]

Lemma 3.3.22. Given a curve C ⊂ CP2, Q(C) is birationally equivalent to C.

Proof. It is enough show that there is an open subset U of CP2 such that Q : U −→ U is an
isomorphism.

Noting that

(39) Q2[X : Y : Z] = Q[Y Z : XZ : XY ] = [XY ZX : XY ZY : XY ZZ] = [X : Y : Z]

we see Q−1 = Q, and thus

Q : U
∼=−→ U

Hence Q is a birational map between C and Q(C).

�

If C = ζ(F ), where F [X : Y : Z] ∈ C[X : Y : Z] is a homogenous polynomial of degree n,
then what is the homogenous polynomial F ′[X : Y : Z] associated with C ′?

We start by considering the action of Q on F . Given C ⊂ CP2 call

FQ = F [Y Z : XZ : XY ]

the algebraic transform of C [2].

Remark 3.3.23. FQ has degree 2n.

Next, we decompose F as follows: let r1 = mP 1(C), r2 = mP 2(C) and r3 = mP 3(C), then,
we consider F to be the sum of homogeneous polynomials of degree i multiplied by a factor of
Zn−i.

(310) F [X : Y : Z] =
n∑

i=r1

Fi[X : Y ]Zn−i
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Then, FQ is given by

(311)
n∑

i=r1

Fi[ZY : XZ](XY )n−i

Clearly, we can factor out Zr1 , Y r2 and Xr3 , and so

(312) FQ = Zr1Y r2Xr3F ′[X : Y : Z].

We call F ′[X : Y : Z] in this expression the proper transform of F .

For Q to be useful in resolving singularities of curves, applying Q must reduce a non-ordinary
singularity of a C ⊂ CP2 to an ordinary curve without introducing new non-ordinary singu-
larities. For Q to not introduce non-ordinary singularities, C must be such that none of the
fundamental lines are tangential to C at a fundamental point, and L1 intersects C transversally in
n distinct non-fundamental points, whilst L2 and L3 intersect C transversally in n − r1 distinct
non-fundamental points each.

Whilst these conditions appear to restrict the utility of quadratic transformations, we will show
that through a change of coordinates, any curve in CP2 can be transformed to satisfy the require-
ments.

Definition 3.3.24. We say C ⊂ CP2 is in excellent position if it satisfies the following:

(a) none of the fundamental lines are tangential to C at a fundamental point,

(b) L1 intersects C transversally in n distinct non-fundamental points

(c) L2 and L3 intersect C transversally in n− r1 distinct non-fundamental points each.

If C is in excellent position, then with C ′ = ζ(F ′) as defined above, we obtain the following
Lemma specifying what the singular points of C ′ are:

Lemma 3.3.25. If C is in excellent position, then C ′ has the following singularities:

(a) those points in Q(C) ∩ U which correspond to multiple points, with the multiplicity
preserved, as well as the type of multiple point

(b) P 1, P 2, P 3 are ordinary multiple points of C ′, with multiplicities n, n − r1 and n − r1

respectively

(c) Any non-fundamental points on C ′ ∩ L1, say p1, . . . , ps, with νpi(C
′) ≤ νpi(C

′, L1) and

(313)
∑

νpi(C
′, L1) = r
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Proof. For (a), note that C ′ ∩ U and C ∩ U are isomorphic, and so from Theorem 2.3.18, the
multiplicities of corresponding points are the same. No fundamental line is tangential to C at a
fundamental point, and thus none are tangent fo C ′ at a fundamental point either.

Furthermore,

∑
νpi(C

′ ∩ L) =
∑

νpi(ζ(Fr(Y,X) ∩ L) = r

with Fr the degree r homogenous component of F . This yields (c) and (b) follows by applying
this to Q(C) and Q(Q(C)) = C. �

Now that we know which points of the strict transform C ′ of C are singular, we note that given
any curve C ⊂ C2 there is a change of coordinates T such that the curve T (C) is in excellent
position and T ([0 : 0 : 1]) = P , with P the point of interest in C.

Summarising we obtain

Theorem 3.3.26. Any irreducible curve C ⊂ CP2 may be transformed into a birationally equiv-
alent curve with singularities which are only ordinary multiple points by a finite sequence of
quadratic Transformations.

And thus we can use the algorithm and quadratic transformations to obtain a standard resolution
of a singularity of C ⊂ CP2.

3.4. Resolving several singularities

As σ-processes are local, they do not affect other singularities, and so we may simultaneously
blow up several singular points pi of the curve C. To resolve several singular points p1, . . . pt of a
curve C ⊂ C2, we choose coordinates on CP2 such that all the pi lie in the first coordinate chart,
and consider these points in C2.

We define a map for each pi = (ai, bi), an analogue of the construction in Definition 3.1.3:

fi : C2 \ {pi} −→ CP1, (x, y) 7−→ [x− ai : y − bi]

and use these to construct

F = (fi, . . . , ft) : C2 \ {pi} −→ CP1
1 × . . .× CP1

t .

Let G ⊂ C2 × CP1
1 × . . .× CP1

t be the graph of f .
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Lemma 3.4.27. The closure of G is the set

B := ζ ({Ui(y − bi)− Vi(x− ai) | i = 1, . . . , t}) ⊂ C2 × CP1
1 × . . .× CP1

t

Proof. The only points in B\G are those which correspond to the singular points pi ∈ C ⊂ CP2,
which are the limit points of G not in G. Thus, G = B. �

Let ρ be the restriction to B of the projection from CP2 × CP1
1 × . . .× CP1

t to CP2.

Now take a curve C ⊂ CP2 with singularity (0, 0), and call ρ−1(C) the strict pre-image of C,
and E = ρ−1((0, 0)) the exceptional line.

To ensure that we obtain another plane curve, and can repeat the process if necessary, we make a
definition analogous to Definition 3.1.6:

Definition 3.4.28. Let π̃ be the projection from C2 × CP1 × . . .CP1 to C2 given by

π̃((x, xv), [u1 : v], . . . , [ut : v]) = (x, v).

Then, define

(314) Υ = F−1 ◦ π̃−1 : C2 −→ C2,

and call Υ−1(C) the strict transform of C.

The definition of a standard resolution as in 3.1.10 is still the appropriate definition, and by
Theorem 3.2.19, we know that each singularity can be resolve in a finite sequence of σ-processes,
and so we obtain the corollary

Corollary 3.4.29. For any irreducible curve C ⊂ CP2 with singularities pi, we can resolve
the singularities through a finite sequence of σ-processes, and the upper bound on the number
required is related to the maximum of the multiplicities νpi(C).

3.5. Reducible Curves

The assumption of irreducibility has been persistent throughout the preceding discussion. In
this section, we will show that this assumption can be relaxed, allowing us to further strengthen
Theorem 3.3.26.

To resolve the singularity of a reducible curveC = ∪iCi, we blow up each irreducible component
Ci, and thus the only notion which requires modification is that of a standard resolution.
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Definition 3.5.30 (Standard resolution for reducible curves). Take a reducible curve C = ∩ri=1Ci

in C2, r ≥ 2. Let C2
j

Υj−→ C2
j−1

Υj−1−−−→ . . .
Υ2−→ C2

1
Υ1−→ C2 a sequence of σ-processes, with

E(i) = (Υ1 ◦ . . . ◦Υi)
−1(0, 0) the ith exceptional line, and C(i) = (Υ1 ◦ . . . ◦Υi)−1(C \ {(0, 0)}

the ith strict transform of C.

Take C2
i+1

Υi+1−−−→ C2i as the blow up all points pi ∈ C(i) ∩ E(i) ⊂ C2i such that νpi(C
(i)) > 1 or

νp1(C
(i), E(i0)) > 1 or C(i) intersects two components of E(i) simultaneously.

Then a standard resolution is C2
k

Υk−→ C2
k−1

Υk−1−−−→ . . .
Υ2−→ C2

1
Υ1−→ C2 such that all the branches of

C(k) are smooth, C(i) ∩ C(j) = ∅ for all i, j, and the intersections of C(k) and E(k) do not occur
where multiple branches of E(k) meet and are transversal.

Example 16. Take the reducible curve C = ζ((Y 2Z −X3)(Y 2Z −X3 −X2Z)) ⊂ CP2, with
irreducible components

C1 = ζ(Y 2Z −X3)

C2 = ζ(Y 2Z −X3 −X2Z)

C has a singularity at [0 : 0 : 1].

We choose an affine chart by letting Z = 1, and perform the first σ-process.

x

y

FIGURE 19. ζ((y2 − x3)(y2 − x3 − x2))

A first σ-process by substituting xy for y yields the strict transform (y2 − x)(y2 − x − 1) and
exceptional line E1 = ζ(x)
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x

y

v

FIGURE 20. ζ((v2 − x)(v2 − x− 1))

We pass to CP2 again, and obtain the curve ζ((Y 2 − Z)(Y 2 −XZ − Z2)). Choosing the affine
chart X = 1, we obtain (y2 − z)(y2 − z − z2), and perform a σ-process by replacing y with yz,
which yields the strict transform ζ((yz − 1)(yz − z − 1)), and exceptional line E1 = ζ(x) and
E2 = ζ(z). Here E1 is the line at infinity.

z

y

FIGURE 21. ζ((yz − 1)(yz − z − 1))

Passing to CP2 again, we obtain the curve ζ((Y Z−X2)(Y Z−XZ−X2)). Choosing the affine
chart Z = 1 yields(y − x2)(y − x − x2), and the exceptional lines E1 = ζ(x) and E2 = ζ(z),
where E2 is the line at infinity.
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x

y

FIGURE 22. ζ((y − x2)(y − x− x2))

We perform another σ-process, substitution xy for y, and obtain the strict transform as the zero
set of (y − x)(y − x− 1) and exceptional lines E1 = ζ(x) and E2 = ζ(z), where E2 is the line
at infinity.

x

y

FIGURE 23. ζ((v − x)(v − x− 1))

This is a standard resolution.

Having extended blow ups and σ-processes to reducible curves allows us to strengthen Theorem
3.2.19:

Theorem 3.5.31. Given any curve C ⊂ CP2, we can resolve the singularities through a finite
sequence of σ-processes.



CHAPTER 4

Representing Standard Resolutions

Now is a time for, dare I say it, kindness. I
thought being extremely smart would take
care of it. But I see I have been found out.

Margaret Edson
W;t

There are several ways to represent information about singularities of a curveC ⊂ CP2. Informa-
tion about the resolution of a singularity is nicely presented by the multiplicity sequence and the
resolution graph. Topological information about the singularity is provided by the Puiseux Pairs
(including the braid of the singularity, which allows us to classify singularities). The multiplicity
sequence represents the multiplicities of the infinitely near points of the singularity, while the
resolution graph depicts how the exceptional lines and strict transform generated by a sequence
of σ-processes intersect. We first define the multiplicity sequence for irreducible and reducible
curves and provide examples. Then, we define the resolution graph for irreducible and reducible
curves, providing examples. Finally, we show that the information contained in the multiplicity
sequence, resolution graph, and Puiseux characteristic exponents is equivalent.

4.1. Multiplicity Sequences

First we define the multiplicity sequence for a standard resolution of a singular point p on an
irreducible curve C [1].

Definition 4.1.1. Let C ⊂ CP2 be an irreducible curve, and p a singular point of C. Take

ν0 = νp(C),

and let νi be the multiplicity of the associated point pi in the ith strict transform C(i) of C.
Assume that C(n) is the standard resolution of p ∈ C, then νi = 1 for all i ≥ n. The sequence

(41) (ν0, ν1, . . . , νn−1)

is the multiplicity sequence of the standard resolution C(n).
59
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Example 17. We now consider the multiplicity sequences for the examples in the previous chap-
ter.

In Example 11 with C = ζ(y2−x3), the standard resolution has multiplicity sequence is (2, 1, 1).

In Example 12 with C = ζ(y2 − x3 − x2), the standard resolution multiplicity sequence is (2).

In Example 13 with C = ζ(y2 − x5), the standard resolution multiplicity sequence is (2, 2, 1, 1).

We now extend this to reducible curves.

Definition 4.1.2. Let C = ∩rj=1Cj ⊂ CP2 be a reducible curve with irreducible components Cj ,
and p a singular point of C. Take νj0 = νjp(Cj), and let νi be the multiplicity of the associated
point pi in the ith strict transformC

(i)
j ofC. Assume thatC(n) is the standard resolution of p ∈ C,

then νi = 1 for all i ≥ n. For each Cj , we have the multiplicity sequence

(42) (νj0, ν
j
1, . . . , ν

j
n−1)

Then, we can form the system of sequence

(ν1
0 , ν

1
1 , . . . , ν

1
n−1)

(ν2
0 , ν

2
1 , . . . , ν

2
n−1)

. . .

(νr0 , ν
r
1 , . . . , ν

r
n−1)

which we call the system of multiplicity sequences of p ∈ C. For each j, there is an Lj ∈ N such
that the Lj strict transform of C(j) is non-singular, intersects the exceptional lines as required,
and does not intersect the strict transforms of the other irreducible components. We call this Lj
the proper length of the jth multiplicity sequence.

Example 18. We now consider the multiplicity sequences for the standard resolution of

C = ζ((Y 2Z −X3)(Y 2Z −X3 −X2Z))

in Example 16:

(2, 1, 1)

(2, 1, 1)
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4.2. Resolution Graphs

We now define the resolution graph for the standard resolution of an irreducible curve [4].

Definition 4.2.3. Let C ⊂ CP2 be an irreducible curve, and p a singular point of C. Assume
that C(n) is the standard resolution of the singularity p ∈ C, and recall the definitions of the
exceptional lines. The resolution graph is the weighted graph with vertices the exceptional lines
Ei, 1 ≤ i ≤ n and the curve C(n). Two such vertices are connected if the intersection of the
curves they represent is non-empty, that is, we connect Ei and Ej if Ei ∩ Ej 6= ∅, and Ei is
connected to C(n) if they intersect. For each Ei, the weight is i, and in the graph we use i to
represent Ei and ∗ to depict C(n).

Example 19. We now consider the resolution graph for the examples in the previous chapter.

Example 11: the standard resolution of C = ζ(y2 − x3)

∗

321

FIGURE 24. Resolution graph of the singularity at (0, 0) ∈ ζ(y2 − x3).

Example 12: the standard resolution of C = ζ(y2 − x3 − x2)

∗

1

FIGURE 25. Resolution graph of the singularity at (0, 0) ∈ ζ(y2 − x3 − x2).

Example 13: the standard resolution of C = ζ(y2 − x5)

∗

4 321

FIGURE 26. Resolution graph of the singularity at (0, 0) ∈ ζ(y2 − x5).
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We extend this to reducible curves with the following definition [4].

Definition 4.2.4. Let C = ∪rj=1Cj ⊂ CP2 be an irreducible curve, and p a singular point of C.
Assume that C(n) is the standard resolution of the singularity p ∈ C, and recall the definitions of
the exceptional lines. The standard resolution is the weighted graph with vertices the exceptional
lines Ei, 1 ≤ i ≤ n and the curve C(n). Two such vertices are connected if the intersection of
the curves they represent is non-empty, that is, we connect Ei and Ej if Ei ∩ Ej 6= ∅, and Ei
is connected to C(n)

j if they intersect. For each Ei, the weight is i, and in the graph we use i to
represent that Ei and ∗ to depict each C(n)

j .

A method for constructing the standard resolution of a reducible curve from the graphs of the
irreducible components is found in [1]:

Assume we have constructed the standard resolution G̃ for C̃ = ∪n−1
i=1 C

i and let Gn be the
standard resolution of the component C(n). The proper lengths {L′j}n−1

j=1 of the components of C̃
could increase to Lj when considered as components of C, as with C(n). For each 1 ≤ i ≤ n,
let qi = Li−L′i, and for each C(i) introduce qi points between the corresponding ∗ and the point
it is connected to, with the weights increasing accordingly. Denote the new graphs G̃′ and Gn′

respectively. The points of Gn′ representing exceptional lines have weights given by the number
of σ-processes after which they appear.

Assume that Υι is the σ-process which separates C(n) from C̃. Then the points of Gn′ with
weights less than ι must be identified with points of G̃′, such that the infinitely near points agree.
These identifications can be obtained from the multiplicity sequence.

Now, we construct the standard resolution G for C = ∪n−1
i=1 C

i ∪ C(n) from the modified graphs
G̃′ and Gn′ as follows:

(1) the points of G are those of G̃′, and Gn′ such that i > ι and the ∗ representing C(n)

(2) for points of Gn′ with index greater than ι, they are connected as in Gn′ , and for index less
than or equal to ι they are connected to the corresponding points of G̃′

(3) points of G̃′ with weight less than ι remain connected in G if they are connected to the point
ι in G̃′, but the point with same weight from Gn′ is not connected to ι from Gn′ .

Example 20. We now consider the standard resolution for the standard resolution of

C = ζ((Y 2Z −X3)(Y 2Z −X3 −X2Z))

in Example 16.

The proper length for the irreducible component given by y2 − x3 − x2 is 1, so we must add 2

points to its standard resolution, and the infinitely near points only coincide at the singularity, so
we join the vertices with weights ≤ 1.
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∗

32123

∗

FIGURE 27. Resolution graph of the singularity at (0, 0) ∈ ζ((y2 − x3)(y2 − x3 − x2)).

4.3. Relating Multiplicity Sequences and Resolution Graphs

We will show that the multiplicity sequence and resolution graph of an irreducible curve

C = ζ(f(x, y))

are equivalent, by exploring their connections with the characteristic Puiseux exponents of f(x, y).
We follow [1] closely.

We can represent the Puiseux expansion through the parametrisation

x = tm

y = a1t
k1 + a2t

k2 . . . ai 6= 0ki ∈ N ∩ {0}

and to express µ0(C) in terms of m and the ki. To do so, note that the multiplicity at a point
is the intersection multiplicity with a general line at that point. This intersection multiplicity is
obtained by substituting the Puiseux expansion into the general line equation. For C, we obtain
four cases:

(i) m ≤ k1 ⇒ ν(0,0)(C) = m

(ii) m > k1 > 0⇒ ν(0,0)(C) = k1

(iii) k1 = 0,m ≤ k2 ⇒ ν(0,0)(C) = m

(iv) ki = 0,m > k2 ⇒ ν(0,0)(C) = k2

We now examine what a blow up does to the Puiseux series in each case:

Case (i): we blow up by substituting x = v and y = uv, and have the transformed Puiseux
expansion

u = a1t
k1−m + a2t

k2−m . . .

v = tm
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Case (ii): we blow up by substituting x = uv and y = v, and have the transformed Puiseux
expansion

u = b1t
m−k1 + b2t

m−k2 + . . .

v = a1t
k1 + a2t

k2 + . . .

Case (iii): we blow up by substituting x = v and y− ai = uv, and have the transformed Puiseux
expansion

u = a2t
k2−m + a3t

k3−m + . . .

v = tm

Case (iv): we blow up by substituting x = uv and y− a1 = v, and have the transformed Puiseux
expansion

u = b1t
m−k2 + b2t

m−k3 + . . .

v = a2t
k2 + a2t

k2 + . . .

For each case, the Puiseux Series for the strict transform again falls into one of the cases, and
we can calculate ν1

0(C). By repeating this process, we can describe an algorithm for calculating
the multiplicity sequence. Through the iterations, we obtain a chain of ‘Euclidean algorithms’
of length g, for some g. Hence, we obtain the following Proposition:

Proposition 4.3.5. Take an irreducible curve C = ζ(f(x, y)) with parametric Puiseux expansion

x = tΛ

y = a1t
Λ1 + a2t

Λ2 + . . .+ agt
Λg

where we omit terms with non-characteristic exponents. Consider the chain of g algorithms

Λi − Λi−1 = µi,1νi,1 + νi,2

νi,1 = µi,2νi,2 + νi,3

. . .

νi,ω(i)−1 = µi,ω(1)νi,ω(i)

for i = 1, . . . g, and ω(i) is the number of steps before the Euclidean algorithm terminates and
Λ0 = 0. Then, the multiplicity νi,j appears µi,j times in the multiplicity sequence. Using this
algorithm, we can reconstruct the exponents of the Puiseux expansion.
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Using the same g Euclidean algorithms, we can construct the Resolution Graph as follows.

The graph consists of g chains Pi, called Puiseux chains, and each Pi is composed of elementary
chains Ei,j .

These elementary chains Ei,j represent blowing up the µi,j curves obtained from blowing up the
µi,j curves with multiplicity νi,j , where the weights of the graph are successive. Hence, we need
only know the length and starting value and length of the chain.

The points of Pi are the points of the Ei,j , and we connect the points as follows: points within an
Ei,j are connected as in Ei,j , and the final point of Ei,j is connected to the initial point of Ei,j+2, if
it exists. The last point of Ej, ω(i)− 1 is connected to the final point of Ei,ω(i), called the contact
point of Pi. The initial point of Pi is the initial point of Ei,1, or Ei,3 if νi,1 = 0 and ω(i) ≥ 3 and
it is the final point of Ei,2. The end point of Pi is the initial point of Ei,2.

We connect the Puiseux chains as follows:

(a) if i < g, then the contact point of Pi is connected to the initial point of Pi+1

(b) the contact point of Pi is connected to the vertex representing the standard resolution.

Summarising we obtain:

Theorem 4.3.6. Consider a curve C ⊂ CP2, and a standard resolution, then

(a) Given the characteristic Puiseux exponents, we can construct the multiplicity sequence
and the resolution graph.

(b) Given the multiplicity sequence, we can construct the characteristic exponents and the
resolution graph.

(c) Given the resolution graph, we can construct the characteristic exponents and the multi-
plicity sequence.

Remark 4.3.7. The Puiseux characteristic exponents are an invariant of the singularity, and so
any two standard resolutions of a singularity are equivalent.

In this chapter, we introduced two methods of describing a standard resolution of a singularity
p of C ⊂ CP2: the multiplicity sequence and the resolution graph. We showed that we can
use these to obtain the characteristic Puiseux exponents. The next steps in understanding the
singularity p would be to examine the topological nature of p by looking at the intersection of C
with an open ball centred at p. This would lead to examining the links and knots obtained, and
allow for a classification of singularities.
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