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Abstract:  Many data-rich industries are interested in the efficient discovery and modelling of structures 
under-lying large data sets, as it allows for the fast triage and dimension reduction of large volumes of data 
embedded in high dimensional spaces. The modelling of these underlying structures is also beneficial for the 
creation of simulated data that better represents real data. In particular, for systems testing in cases where the 
use of real data streams might prove impractical or otherwise undesirable. We seek to discover and model 
the structure by combining methods from topological data analysis with numerical modelling. As a first step 
in combining these two areas, we examine the recovery a linearly embedded graph |G| given only a noisy point 
cloud sample X of |G|.
An abstract graph G consists of two sets: a set of vertices V and a set of edges E. An embedded graph |G| in n 
dimensions is a geometric realisation of an abstract graph obtained by assigning to each vertex a unique 
coordinate vector in Rn and then each edge is the line segment between the coordinate vectors of the 
corresponding vertices. Given an embedded graph |G| ⊂ Rn, a point cloud sample of |G| consists of a finite 
collection of points in Rn sampled from |G|, potentially with noisy perturbations. We will suppose that this 
sample has bounded noise of ε and is sufficiently sampled so every point in |G| is within ε of some sample. 
Such a sample is called an ε-sample.

We can view this as a semiparametric model. Once the abstract graph is fixed we have a parametric model 
where the parameters are the locations of the vertices. In order to guarantee correctness of our algorithm, we 
will need to make some reasonable geometric assumptions on the embedded graph.

To learn the embedded graph |G|, we first learn the structure of the abstract graph G. We do this by assigning a 
dimension of either 0 or 1 to each x ∈ X (depending on local topological structure) and then cluster points into 
groups representing embedded vertices or edges. Using local topological structure, we then assign to each 
abstract edge cluster a pair of abstract vertex clusters, to obtain the incidence relations of the abstract graph. 
Finally, we use nonlinear least squares regression to model the embedded graph |G|.
The approach presented in this paper relies on topological concepts, such as stratification and local homol-
ogy, which will be used in future research that will generalise this approach to embeddings on more general 
structures, in particular stratified spaces.

A stratified space X is a topological space with a partition into topological manifolds {Xi}i∈I , called strata, 
such that for all i and j, Xi ∩ Xj = ∅, and if Xi ∩ Xj 6= ∅, then Xi ⊆ Xj .

If we are interested in a specific topological structure, we can require that the strata satisfy aditional criteria, 
so that this structure is constant across each strata. In the case presented in this paper, the vertices of a graph 
(abstract or embedded) are the 0-strata, and the (open) edges are 1-strata.

The authors are unaware of any algorithms which recover both the abstract graph, and model its embedding.
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1 INTRODUCTION

We seek to uncover information about an embedded |G| ⊂ Rn from a set X ⊂ Rn of noisy sample point x(i)

which are close to |G|. We consider |G| to be topological space, and with the topology induced by Rn. Here
we consider a stratified space |G| which consists of a partition |G| =

⋃k
i=1 |G|i with strata |G|i overlapping

at their boundaries.

Definition 1. A topologically stratified spaceG is a space with a partition into topological manifolds {Gi}i∈I ,
called strata, such that for all i and j, Gi ∩Gj = ∅, and if Gi ∩Gj 6= ∅, then Gi ⊆ Gj .

One says that the strata Gi are glued together at their boundaries. The aim of this project is to recover the
strata from the data points. Here the data points are an ε-sample X ⊂ Rn of |G|, which is a point cloud such
that the Hausdorff distance between X and |G| is bounded above by ε. Recall that the Hausdorff distance
between two subsets Y, Y ′ ⊂ Rn is

dH(Y, Y ′) := max{sup
y∈Y

inf
y′∈Y ′

d(y, y′), sup
y′∈Y ′

inf
y∈Y

d(y, y′)}, (1)

with d(y, y′) the standard Euclidean distance on Rn.

This is an inverse problem and the corresponding direct problem is generating data points from strata. The
project consists of three logical steps:

1. the data is partitioned as

X =

k⋃
j=1

Xj (2)

where the partition Xj contain the points originating from stratum Gj ,

2. establish the dimension of the strata, and the glueing between them,

3. concise numerical descriptions of the strata are computed.

When viewed as a semiparametric modelling problem, the first two steps determine the non-parametric com-
ponents. For this we use topological data analysis. In contrast the last step numerically fits the parametric
model discovered in the earlier procedures.

In this paper we do not consider all stratified spaces and instead restrict to linear embeddings |G| of abstract
graphs G. An abstract graph G is a stratified space with only 0- and 1dimensional strata, and each 1 dimen-
sional strata (1-stratum) has two 0 dimension strata (0-stratum) as its boundary. We thus consider the 1-stratum
G1
i to be a tuple of 0-strata (G0

i1
, G0

i2
). We often omit the superscript, in particular when writing 1-strata as a

tuple.

To obtain a stratification of a graph, we will consider the local homology of each strata. Given a topological
space G, the local homology at a point g describes the linear combinations of closed manifolds in a small
region of G around g. Examples of stratifications using other local topological structures can be found in
Hughes and Weinberger (2001), Nanda (2019), Brown and Wang (2018), and Bendich et al. (2012). Hughes
and Weinberger (2001) provide an overview of different types of stratifications, Nanda uses information about
the local cohomology of cells in a regular CW complex to obtain a canonical stratification, Brown and Wang
(2018) apply sheaves to obtain stratifications of cell complexes, and Bendich et al. (2012) appeal to local
homology to infer which points in a sample of a stratified space have been sampled from the same strata.
Future research will expand the class of embedded stratified spaces we can recover from ε-samples.

2 GEOMETRIC AND TOPOLOGICAL INTUITION

The first part of this semi-parametric problem is to identify the abstract graph structure and partition the points
with respect to this abstract graph. To do this we classify samples topologically by their local neighbourhoods.
This can be defined rigorously through the notion of local homology. Although the theoretical development of
modifications of local homology to work with point cloud motivates and informs the algorithms here, for the
sake of clarity and brevity we will focus on the computational geometry intuition behind the methods. This
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is possible as the local homology for graphs can be expresed in terms of connected components of apropriate
subsets. For more complicated stratified spaces, more sophisticated machinery from algebraic topology will
be required. A description relating this computational geometry to local homology is in the subsection below.

We begin with the idea that whether a point on a graph is on an edge or a vertex can be determined by looking
at how many times the graph intersects a sphere around that point of a small enough radius. For a point on an
edge, the sphere will intersect twice, and for a degree l vertex, it will intersect l times.

However, we do not have access to the underlying graph but instead only an ε-sample. Our sense of local has
to be significantly larger than ε to be geometrically measurable. This has multiple flow on effects in terms of
how we analyse local environments to determine the abstract structure and how we partition the points into the
vertices and edges.

Since we have a sample of points that are not a subset of the underlying graph it is nonsensical to choose
whether the samples lie on a vertex or an edge. Instead, we decide whether they are near a vertex or an
edge. We will classify points by the local geometry. For this we will fix a distance of 10ε to be our sense of
local. That is for each sample point we look at all the samples within 10ε of it and try to understand the local
geometry at this 10ε scale. Does this geometric structure look that that of a neighbourhood of a vertex or of an
edge? This is the purpose of the dimension function within the algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) contains the ε-sample. (b)-(f) illustrate different cases of local neighbourhood. The colours 
indicate different connected components in the annular region.

When we had the underlying graph we could measure the unique point on each nearby edge which intersected 
the sphere. With an ε-sample we have to use an annulus instead of a sphere in order to ensure that there exists 
a sample point for each intersection. By making the difference of the inner and outer radius to be 2ε (as in the 
region with distance between 8ε and 10ε from the sample) we can guarantee that a ball of radius ε around a 
location in the graph is contained in the annular region and hence there will be a sample point in the ε-sample. 
There can be multiple samples in this annular region for each edge and so we consider equivalence classes 
of points that would be samples of the that part of the edge. This can be achieved by considering connected 
components where we connect two points when they are within 3ε.

There are two cases where we declare that a sample is near an edge (or rather that it is not near a vertex). 
The typical case is that the samples lying in an 10ε ball around sample q are noisy samples of a straight line 
that passes at most ε from q. This set of points are all connected at threshold 2ε and there are two connected 
components at threshold 3ε for the set of samples restricted to the annulus. Furthermore these connected 
components lie close to directly opposite each other. The angle between the centroids is at least 2 arccos(1/4).
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An example is shown in Figure 1 (b). The other case occurs when we are closer to a vertex where there is an
acute angle between adjacent edges. Here the samples lying in an 10ε ball are not all connected at threshold
2ε. An example is shown in Figure 1 (c).

Given a lower bound of π/6 for the angle between adjacent vertices, we can guarantee one of these two cases
will occur for every sample at least 15ε away from every vertex. Thus, each such sample will be classified as
near an edge by the dimension function.

We also want to show that the dimension function declares all samples sufficiently close to a vertex are of
dimension 0. Near a vertex of degree larger than 2, we will want the number of connected components to be at
least 3 for all samples sufficiently close to the vertex. This will depend on a lower bound on the angle between
adjacent edges and for our algorithm (with the inner radius set at 8ε) a sufficient condition is a lower bound of
π/6. With such a bound, any sample q with ‖q− v‖ < 2ε the samples within an 10ε ball of q are all connected
at a threshold of 2ε and each of the edges will contribute a different connected component within the annulus
centred at q. An example is illustrated in Figure 1 (f).

Stronger statements can be made in terms of the existence of connected components representing each of a
suitable subsets of edges near a sample point. This covers other cases such as in Figure 1 (d). We can guarantee
that the samples declared to be of dimension 0 spread far enough to separate the points declared of dimension
1 on the different edges, so that they appear as separate clusters in dim−1(1).

To detect vertices of degree 2 we have to introduce an angle condition. When the annulus has two connected
components we measure the angle between the vectors pointing to the center of these two components. If we
lie near an edge then the angle should be at least 2 arccos(1/4). In contrast if the angle at the vertex is θ and q
is within 4ε of both edges then the computed angle between the connected components is bounded from above
by θ + arcsin(1/4) + arcsin(5/8). Since our algorithm declares the dimension is 0 once the angle is below
2 arccos(1/4) we can guarantee identifying the abstract graph structure when θ ≤ π/2. This covers other
cases such as in Figure 1 (e).

The dimension function effectively partitions the samples into those assigned to a vertex and those assigned to
an edge we can then further partition the samples into the connected components with appropriate thresholds.
We use 3ε as the threshold between samples in dim−1(1) to say they are of the same edge. A low threshold is
needed to ensure that we do not merge adjacent edges. We use the much larger 9ε when looking to see with
samples in dim−1(0) are connected. We can use this higher threshold because of the geometric assumptions
about minimum distances between vertices.

Once we have a partition of the samples into the clusters for dim−1(0) and dim−1(1) we can read off the ab-
stract graph. The dim−1(0) and dim−1(1) clusters are in bijection with the vertices and the edges respectively.
Furthermore, for each edge e ∈ E with corresponding dim−1(1) cluster c(e) there are exactly two dim−1(0)
clusters with points within 3ε of c(e). These correspond to the vertices that bound e in the abstract graph.

We then wish to model the locations of the vertices as the vertices completely determine the embedding of the
graph. We do this using a least squares estimator which will minimise the sums of distances from the samples
to the embedded graph where this distance is the distance to a vertex if the sample is in dim−1(0) and the
distance is the distance to the corresponding edge if the sample is in dim−1(1). It should be noted that this is
naturally a biased estimator which is visable in the simulations. The bias is for vertices to drift in the direction
where there a more edges. A future direction of research is to reduce, or estimate and correct for this bias.

2.1 Relationship to local homology

For Y a topological space, the homology groups Hi(Y ) are algrabic summaries of the topological structure of
Y . We have a homology group for each dimension i: H0(Y ) describing the connected components of Y and
H1(Y ) the space of loops. E.g. The homology of the wedge of N circles is rank(H1(

∨
N S

1)) = N .

To measure the local topological structure at a point q we can construct a quotient space where everything
far from q is quotiented to a single point. The local homology at q is defined at the limit of the homology of
Y/{y ∈ Y : d(y, q) > r} as r tends to 0. The the case where the Y is an embedded graph then the local
homology of a vertex with degree k is that of the wedge of k − 1 copies of S1. The local homology of a point
along an edge is that of

∨
k−1 S

1.

Since we do not have access to the underlying graph but instead an ε-sample it is not meaningful to take the
limit as r goes to 0. Instead the practice in topological data analysis is to use the sample point cloud to estimate
the R-local homology which uses a fixed radius r = R in the construction of the relevant quotient spaces. In
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the case of an embedded graph Y with all vertices separated by at least 2R and q a point near X , this R-local
homology is that of the wedge of k− 1 spheres where k is the number of points in Y ∩ ∂B(q,R). Note that if
an edge intersects twice if and only if it is its own separate connected components inX∩B(q,R). By counting
the connected components in Y ∩ B(q,R) and Y ∩ ∂B(q,R) we can completely determine the topological
structure of embedded graph Y near q.

3 ALGORITHM

The steps 2 through 5 of the algorithm use topological data analysis while the last step is a nonlinear least-
squares fit.

Step 1: Construct G3ε(X). This step constructs an embedded graph G3ε(X) on the sample X , by connect-
ing points p, q ∈ X if d(p, q) ≤ 3ε.

Step 2: Dimension Function. Given a point q ∈ X , we construct the subgraph of G3ε(X) generated by the
points within 10ε of q, and restrict the edges . If this graph is disconnected, the function outputs dimension 1.
Otherwise, we consider the subcomplex generated by the points in the annulus of radii 8ε and 10ε around q. If
the number of connected components is not 2, we assign dimension 0, if it is 2, we apply the angle test.

1. Take the subgraph Gq of G3ε(X) generated by points p ∈ X such that d(p, q) ≤ 10ε.

2. Remove edges between points p, p′ if d(p, p′) > 2ε.

3. For p, p′ vertices in Gq , add an edge between p and p′ if d(p, p′) ≤ 2ε.

4. If the number of connected components in Gq is not 1, output dimension 1.

5. Else, consider subgraph G
(1)
q of G3ε(X) generated by p ∈ Gq such that d(p, q) ≥ 8ε.

6. If the number of connected components in G
(1)
q is not 2, return dimension 0.

7. Else, do Step 2a.

Step 2a: Angle test. For points p with 2 connected components in the annulus with radii (8ε, 10ε), we
calculate the angle between the components by taking the mid-point of each cluster, and calculating the angle
between the lines joining p and each mid-point. If this angle is less that 2 arccos(1/4), the dimension function
outputs 0, otherwise it outputs 1.

1. Find average of coordinates of points in the two connected components.

2. Calculate angle between the line segments from averages to q.

3. If angle is less that 2 arccos(1/4) return dimension 0.

4. Else return dimension 1.

Step 3: Finding the vertices. Having determined the dimension of each point in the sample, we consider the
subcomplex generated by the points we have assigned dimension 0. Considering the connected components
of this subcomplex, we obtain the clusters of points surroudning vertices.

1. Generate subgraph of G9ε(X) on the points with dimension function 0.

2. Map each connected component of the subgraph to a vertex of an abstract graph.

Step 4: Finding the edges. Having determined the dimension of each point in the sample, we consider the
subcomplex generated by the points we have assigned dimension 1. Considering the connected components
of this subcomplex, we obtain the clusters of points surrounding the edges.

1. Generate subgraph of G3ε(X) on the points with dimension function 1.

2. Map each connected component of the subgraph to a vertex of an abstract graph.
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Step 5: Assigning boundary vertices to edges. For each edge cluster, we find the two vertex clusters which
have points connected to those in the edge cluster in the full complex.

1. For each connected component G1
i in the preimage of 1 under the dimension function, we add in points

in the preimage of 0 which are within 3ε of G1
i .

2. Add an edge to the abstract graph (i, j) if points from the ith and jth connected components in preimage
of 0 are added above.

Step 6: Nonlinear least squares fitting. This is the final step in recovering the embedded graph |G|. Thus
far, we have the abstract graph (V0, E0) of G. We also determined for each data point x(i) the stratum Gj
which it is closest to. We will now determine the geometric information used to embed X in Rd. For the
0-dimensional strata Xj this is just one point xi ∈ Rn. The set of 0 dimensional strata is just {xj | j ∈ V0}.
The 1-dimensional strata are of the form Xj = {θxj1 + (1− θ)xj2 | θ ∈ (0, 1)} and the set of 1-dimensional
strata is {θxj1 + (1 − θ)xj2 | (j1, j2) ∈ E, θ ∈ (0, 1)}. Thus we need to determine the xj for j ∈ V0. We
will use a least-squares approach where xj are such that they minimise the sum of Euclidean distances squared
between data points and their associated strata. For the 0 dimensional strata we introduce a partial objective as

φi(x1, . . . , xkv , θi) = ‖p(i) − xj(i)‖2. (3)

Here θi = 0. For 1-dimensional strata we include a parameter θi which models the local coordinate of the data
point in Xj and get a partial objective

φi(x1, . . . , xkv , θi) = ‖p(i) − θixj1(i) − (1− θi)xj2(i)‖
2. (4)

We then get an optimisation problem with objective

Φ(x1, . . . , xkv , θ1, . . . , θn) =
n∑
i=1

φi(x1, . . . , xkv , θi). (5)

We minimise this Φ and have the following conditions for θi:

• θi ∈ [0, 1]

• θi = 0 if j(i) ∈ V0.

This optimisation problem is then solved using a code from scipy.optimize. It implements the trust-region
reflexive method and uses a Gauss-Newton approach. For more details and references see Jones et al. (2001).
As the problem is sparse and converges within a finite number of steps in practice, the complexity of this
approach is approximately O(n).

4 SIMULATIONS

In this section, let G be the abstract graph with vertex set {0, 1, 2, 3, 4} and edge set
{(0, 1), (1, 2), (2, 3), (3, 1)} and ε = 0.1. We consider two embeddings of G: |G|2 ⊂ R2 and |G|3 ⊂ R3.
We will follow the same procedure for both. Taking an ε-sample X , we will partition X , and then use these
partitions to model the embedding. We used Hunter (2007) for generating the images. See Figure 2 and
Figure 3. We provide these figures for illustrative purposes, and the graphs were chosen to display the cases
discussed earlier. We are unaware of any algorithms which both model the embedding |G| and recover the
abstract structure of G from an ε-sample X .

5 CONCLUSIONS

We have provided an algorithm that can learn embedded graphs under reasonable geometric constraints. This
semiparametric modelling algorithm requires as input an ε-sample of the embeded graph, and consists of two
main components. First, it learns the abstract graph structure (the non-parametric component), and then using
non-linear least squares regression, it finds an optimal embedding of vertices (the parameters of the model).
Future directions include reduction, estimation and correction of the bias, expanding the algorithm to piecewise
linear embedded structures, and modifications to deal with semi-algebraic sets.

74



Y. Bokor et al. Stratified Space Learning

Figure 2. Left: An embedding |G|2 ofG in R2 (black) and an ε-sampleX2 of |G|2 (red). Middle: partioniong
of X2 obtained from algorithm. Right: The embedded graph |G|2 (black) and the model ˜|G|2 (red).

Figure 3. Left: An embedding |G|3 ofG in R3 (black) and an ε-sampleX3 of |G|3 (red). Middle: partioniong
of X3 obtained from algorithm. Right: The embedded graph |G|3 (black) and the model ˜|G|3 (red).
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